論文の概要: Improving EEG Classification Through Randomly Reassembling Original and Generated Data with Transformer-based Diffusion Models
- arxiv url: http://arxiv.org/abs/2407.20253v2
- Date: Sat, 17 Aug 2024 17:13:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 01:49:20.505436
- Title: Improving EEG Classification Through Randomly Reassembling Original and Generated Data with Transformer-based Diffusion Models
- Title(参考訳): 変圧器を用いた拡散モデルによる原データと生成データのランダム再構成による脳波分類の改善
- Authors: Mingzhi Chen, Yiyu Gui, Yuqi Su, Yuesheng Zhu, Guibo Luo, Yuchao Yang,
- Abstract要約: 本稿では,トランスフォーマーを用いた拡散確率モデルとデータに基づく拡張手法を提案する。
脳波信号の特徴として,信号の事前処理を行う定数要素スケーリング手法を提案する。
提案手法は,生成したデータを時間領域の原データでランダムに再集合し,ビジナルデータを取得する。
- 参考スコア(独自算出の注目度): 12.703528969668062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electroencephalogram (EEG) classification has been widely used in various medical and engineering applications, where it is important for understanding brain function, diagnosing diseases, and assessing mental health conditions. However, the scarcity of EEG data severely restricts the performance of EEG classification networks, and generative model-based data augmentation methods have emerged as potential solutions to overcome this challenge. There are two problems with existing methods: (1) The quality of the generated EEG signals is not high; (2) The enhancement of EEG classification networks is not effective. In this paper, we propose a Transformer-based denoising diffusion probabilistic model and a generated data-based augmentation method to address the above two problems. For the characteristics of EEG signals, we propose a constant-factor scaling method to preprocess the signals, which reduces the loss of information. We incorporated Multi-Scale Convolution and Dynamic Fourier Spectrum Information modules into the model, improving the stability of the training process and the quality of the generated data. The proposed augmentation method randomly reassemble the generated data with original data in the time-domain to obtain vicinal data, which improves the model performance by minimizing the empirical risk and the vicinal risk. We verify the proposed augmentation method on four EEG datasets for four tasks and observe significant accuracy performance improvements: 14.00% on the Bonn dataset; 6.38% on the SleepEDF-20 dataset; 9.42% on the FACED dataset; 2.5% on the Shu dataset. We will make the code of our method publicly accessible soon.
- Abstract(参考訳): 脳波(EEG)分類は、脳機能を理解し、疾患を診断し、精神状態を評価するために重要である様々な医学・工学的応用で広く用いられている。
しかし、脳波データの不足は脳波分類網の性能を著しく制限し、この課題を克服するための潜在的な解決策として生成モデルに基づくデータ拡張法が登場している。
既存の手法には2つの問題がある: 1) 生成された脳波信号の品質は高くない; (2) 脳波分類網の強化は有効ではない。
本稿では,トランスフォーマーを用いた拡散確率モデルと,上記の2つの問題に対処するためのデータに基づく拡張手法を提案する。
脳波信号の特徴として,信号の事前処理を行う定数要素スケーリング手法を提案する。
マルチスケール・コンボリューションと動的フーリエスペクトル情報モジュールをモデルに組み込み、トレーニングプロセスの安定性と生成データの品質を改善した。
提案手法は,生成したデータを時間領域の原データでランダムに再アセンブルしてビジナルデータを得る手法で,経験的リスクとビジナルリスクを最小化してモデル性能を向上させる。
提案した4つのEEGデータセットの4つのタスクに対する拡張手法を検証するとともに、ボンデータセットの14.00%、SleepEDF-20データセットの6.38%、FACEDデータセットの9.42%、Shuデータセットの2.5%の大幅な精度向上を実現した。
もうすぐ私たちのメソッドのコードを公開します。
関連論文リスト
- How Homogenizing the Channel-wise Magnitude Can Enhance EEG Classification Model? [4.0871083166108395]
我々は、EEGデータ前処理にシンプルで効果的なアプローチを提案する。
提案手法はまず,逆チャネルワイドマグニチュード均質化により,脳波データを符号化画像に変換する。
これにより、巨大なディープラーニングネットワークを使わずに、脳波学習プロセスを改善することができる。
論文 参考訳(メタデータ) (2024-07-19T09:11:56Z) - Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
医療画像データセットは、コンピュータ支援診断、治療計画、医学研究に使用される訓練モデルに不可欠である。
データ分散のばらつき、データの不足、ジェネリックイメージから事前トレーニングされたモデルを使用する場合の転送学習の問題などである。
本稿では,データ不足と分散不均衡の影響を軽減するために,一連の手法を統合したシームズニューラルネットワークに基づく手法を提案する。
論文 参考訳(メタデータ) (2024-01-18T16:59:27Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Data Augmentation for Seizure Prediction with Generative Diffusion Model [26.967247641926814]
重症度予測は患者の生活改善に非常に重要である。
初期データと中間データの間の深刻な不均衡問題は、依然として大きな課題となっている。
データ拡張は、この問題を解決するための直感的な方法です。
DiffEEGと呼ばれる拡散モデルを用いた新しいデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2023-06-14T05:44:53Z) - Improved Techniques for the Conditional Generative Augmentation of
Clinical Audio Data [36.45569352490318]
本稿では,学習したデータ分布からメルスペクトルを合成できる条件付き逆方向ニューラルネットワークによる拡張法を提案する。
提案手法は,従来の音質向上手法よりも優れていることを示す。
提案モデルは,臨床オーディオデータの増大における最先端の進歩と,臨床音響センシングシステムの設計におけるデータのボトルネックを改善する。
論文 参考訳(メタデータ) (2022-11-05T10:58:04Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - Augmentation-Aware Self-Supervision for Data-Efficient GAN Training [68.81471633374393]
識別器が過度に適合する傾向があるため、限られたデータでGANを訓練することは困難である。
本稿では,拡張データの拡張パラメータを予測する,拡張型自己教師型識別器を提案する。
本稿では,クラス条件の BigGAN と非条件の StyleGAN2 アーキテクチャを用いた State-of-the-art (SOTA) 手法と比較する。
論文 参考訳(メタデータ) (2022-05-31T10:35:55Z) - GANSER: A Self-supervised Data Augmentation Framework for EEG-based
Emotion Recognition [15.812231441367022]
本稿では,GANSER(Generative Adversarial Network-based Self-supervised Data Augmentation)という新しいデータ拡張フレームワークを提案する。
脳波に基づく感情認識のための自己教師型学習と対人訓練を併用する最初の試みとして、提案フレームワークは高品質な模擬脳波サンプルを生成することができる。
変換関数は、脳波信号の一部を隠蔽し、生成元に残りの部分に基づいて潜在的な脳波信号を合成させる。
論文 参考訳(メタデータ) (2021-09-07T14:42:55Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - Data Augmentation for Enhancing EEG-based Emotion Recognition with Deep
Generative Models [13.56090099952884]
本稿では、感情認識モデルの性能を高めるために、脳波トレーニングデータを増強する3つの方法を提案する。
フル利用戦略では、生成されたすべてのデータが、生成されたデータの品質を判断することなく、トレーニングデータセットに拡張される。
実験結果から,脳波を用いた感情認識モデルの性能向上を図った。
論文 参考訳(メタデータ) (2020-06-04T21:23:09Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。