論文の概要: Utilizing Generative Adversarial Networks for Image Data Augmentation and Classification of Semiconductor Wafer Dicing Induced Defects
- arxiv url: http://arxiv.org/abs/2407.20268v1
- Date: Wed, 24 Jul 2024 20:44:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 19:27:58.360579
- Title: Utilizing Generative Adversarial Networks for Image Data Augmentation and Classification of Semiconductor Wafer Dicing Induced Defects
- Title(参考訳): 画像データ拡張と半導体ウエハダイシングによる欠陥の分類のための生成逆ネットワークの利用
- Authors: Zhining Hu, Tobias Schlosser, Michael Friedrich, André Luiz Vieira e Silva, Frederik Beuth, Danny Kowerko,
- Abstract要約: 半導体製造において、ウエハダイシングプロセスは中心的でありながら、収率を著しく損なう欠陥に対して脆弱である。
深層ニューラルネットワーク(Deep Neural Network)は、半自動視覚検査における最先端技術である。
本稿では, 半導体ウェハダイシングによる欠陥の画像データの増大と分類にGAN(Generative Adversarial Network)の適用について検討する。
- 参考スコア(独自算出の注目度): 0.21990652930491852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In semiconductor manufacturing, the wafer dicing process is central yet vulnerable to defects that significantly impair yield - the proportion of defect-free chips. Deep neural networks are the current state of the art in (semi-)automated visual inspection. However, they are notoriously known to require a particularly large amount of data for model training. To address these challenges, we explore the application of generative adversarial networks (GAN) for image data augmentation and classification of semiconductor wafer dicing induced defects to enhance the variety and balance of training data for visual inspection systems. With this approach, synthetic yet realistic images are generated that mimic real-world dicing defects. We employ three different GAN variants for high-resolution image synthesis: Deep Convolutional GAN (DCGAN), CycleGAN, and StyleGAN3. Our work-in-progress results demonstrate that improved classification accuracies can be obtained, showing an average improvement of up to 23.1 % from 65.1 % (baseline experiment) to 88.2 % (DCGAN experiment) in balanced accuracy, which may enable yield optimization in production.
- Abstract(参考訳): 半導体製造において、ウエハダイシングプロセスは中心的だが、欠陥のないチップの比率である収率を著しく損なう欠陥に対して脆弱である。
深層ニューラルネットワーク(Deep Neural Network)は、現在最先端の視覚検査(半自動検査)である。
しかし、モデルトレーニングに特に大量のデータを必要とすることで有名である。
これらの課題に対処するために, 半導体ウェハディキシングによる欠陥の増大と分類にGAN(Generative Adversarial Network)を応用し, 視覚検査システムにおけるトレーニングデータの多様性とバランスを高めることを目的とした。
このアプローチにより、現実世界のダイニング欠陥を模倣する合成的で現実的な画像が生成される。
高分解能画像合成には3つの異なるGAN(Deep Convolutional GAN)、CycleGAN(CycleGAN)、StyleGAN3(StyleGAN)を用いる。
その結果, 評価精度は65.1%(ベースライン実験)から88.2%(DCGAN実験)まで平均23.1%向上し, 生産における収率最適化が可能であった。
関連論文リスト
- Wafer Map Defect Classification Using Autoencoder-Based Data Augmentation and Convolutional Neural Network [4.8748194765816955]
本研究では、自己エンコーダに基づくデータ拡張技術と畳み込みニューラルネットワーク(CNN)を組み合わせた新しい手法を提案する。
提案手法は,ランダムフォレスト,SVM,ロジスティック回帰をそれぞれ19%,21%,27%以上,98.56%の分類精度を達成している。
論文 参考訳(メタデータ) (2024-11-17T10:19:54Z) - Leveraging Latent Diffusion Models for Training-Free In-Distribution Data Augmentation for Surface Defect Detection [9.784793380119806]
データ拡張のためのトレーニング不要な拡散型In-Distribution Anomaly GenerationパイプラインであるDIAGを紹介する。
従来の画像生成技術とは異なり、我々は、ドメインの専門家がモデルにマルチモーダルガイダンスを提供する、Human-in-the-loopパイプラインを実装している。
我々は、挑戦的なKSDD2データセットに対する最先端データ拡張アプローチに関して、DIAGの有効性と汎用性を実証する。
論文 参考訳(メタデータ) (2024-07-04T14:28:52Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Forgery-aware Adaptive Transformer for Generalizable Synthetic Image
Detection [106.39544368711427]
本研究では,様々な生成手法から偽画像を検出することを目的とした,一般化可能な合成画像検出の課題について検討する。
本稿では,FatFormerという新しいフォージェリー適応トランスフォーマー手法を提案する。
提案手法は, 平均98%の精度でGANを観測し, 95%の精度で拡散モデルを解析した。
論文 参考訳(メタデータ) (2023-12-27T17:36:32Z) - DifAugGAN: A Practical Diffusion-style Data Augmentation for GAN-based
Single Image Super-resolution [88.13972071356422]
本稿では,DifAugGAN として知られる GAN ベースの画像超解像法(SR) のための拡散型データ拡張手法を提案する。
それは、訓練中の判別器の校正を改善するために、生成拡散モデルに拡散過程を適用することを含む。
我々のDifAugGANは、現在のGANベースのSISR手法のプラグ・アンド・プレイ戦略であり、判別器の校正を改善し、SR性能を向上させることができる。
論文 参考訳(メタデータ) (2023-11-30T12:37:53Z) - Attention Modules Improve Image-Level Anomaly Detection for Industrial
Inspection: A DifferNet Case Study [2.2942964892621807]
本稿では注意モジュールを付加したDifferNetベースのソリューションを提案する。
産業検査用の3つの視覚異常検出データセットにおける画像レベルの検出と分類機能を改善する。
評価の結果,全AUROCでは,DifferNetに比べて平均1.77+0.25ポイントの改善が見られた。
論文 参考訳(メタデータ) (2023-11-05T19:48:50Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
我々は,Neural Radiance Fields (NeRF) を用いてシーン座標回帰のためのトレーニングサンプルを生成することを提案する。
レンダリングにおけるNeRFの効率にもかかわらず、レンダリングされたデータの多くはアーティファクトによって汚染されるか、最小限の情報ゲインしか含まない。
論文 参考訳(メタデータ) (2023-10-10T20:11:13Z) - Wafer Map Defect Patterns Semi-Supervised Classification Using Latent
Vector Representation [8.400553138721044]
集積回路製造段階における欠陥検出の需要はますます重要になりつつある。
従来のウェハマップ欠陥パターン検出法は、電子顕微鏡を用いた手動検査を含む。
手動操作の代わりに欠陥を自動的に検出できるモデルを提案する。
論文 参考訳(メタデータ) (2023-10-06T08:23:36Z) - SEMI-DiffusionInst: A Diffusion Model Based Approach for Semiconductor
Defect Classification and Segmentation [0.11999555634662631]
この研究は拡散モデルを用いて半導体欠陥パターンを正確に検出し、正確にセグメント化する最初の実演である。
提案手法は,mAP全体のこれまでの成果よりも優れており,ほぼすべての欠陥クラスに対して比較的優れた性能を示す。
論文 参考訳(メタデータ) (2023-07-17T17:53:36Z) - Defect Classification in Additive Manufacturing Using CNN-Based Vision
Processing [76.72662577101988]
本稿では、まず、畳み込みニューラルネットワーク(CNN)を用いて、画像データセットの欠陥をAMから第2に正確に分類し、発達した分類モデルにアクティブラーニング技術を適用する。
これにより、トレーニングデータやトレーニングデータの生成に必要なデータのサイズを削減できる、ヒューマン・イン・ザ・ループ機構の構築が可能になる。
論文 参考訳(メタデータ) (2023-07-14T14:36:58Z) - FD-GAN: Generative Adversarial Networks with Fusion-discriminator for
Single Image Dehazing [48.65974971543703]
画像デハージングのためのFusion-Discriminator (FD-GAN) を用いた完全エンドツーエンドのジェネレータネットワークを提案する。
我々のモデルは、より自然でリアルなデハズド画像を生成することができ、色歪みは少なく、アーティファクトも少ない。
実験により, 提案手法は, 公開合成データセットと実世界の画像の両方において, 最先端の性能に達することが示された。
論文 参考訳(メタデータ) (2020-01-20T04:36:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。