論文の概要: Painting with Words: Elevating Detailed Image Captioning with Benchmark and Alignment Learning
- arxiv url: http://arxiv.org/abs/2503.07906v1
- Date: Mon, 10 Mar 2025 22:53:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:43:57.146305
- Title: Painting with Words: Elevating Detailed Image Captioning with Benchmark and Alignment Learning
- Title(参考訳): 単語による絵画:ベンチマークとアライメント学習による詳細な画像キャプションの向上
- Authors: Qinghao Ye, Xianhan Zeng, Fu Li, Chunyuan Li, Haoqi Fan,
- Abstract要約: 我々はDeCapBenchと、詳細なキャプションタスク用に特別に設計された新しいメトリックであるDCScoreを紹介する。
DCScoreは、反応を最小の自己充足単位に分解することで、幻覚ときめ細かい包括性を評価する。
DeCapBenchは、視覚言語モデルの既存のベンチマークを上回り、記述タスクにおけるVLMアリーナの結果と高い相関を示す。
- 参考スコア(独自算出の注目度): 56.31096024472269
- License:
- Abstract: Image captioning has long been a pivotal task in visual understanding, with recent advancements in vision-language models (VLMs) significantly enhancing the ability to generate detailed image captions. However, the evaluation of detailed image captioning remains underexplored due to outdated evaluation metrics and coarse annotations. In this paper, we introduce DeCapBench along with a novel metric, DCScore, specifically designed for detailed captioning tasks. DCScore evaluates hallucinations and fine-grained comprehensiveness by deconstructing responses into the smallest self-sufficient units, termed primitive information units, and assessing them individually. Our evaluation shows that DCScore aligns more closely with human judgment than other rule-based or model-based metrics. Concurrently, DeCapBench exhibits a high correlation with VLM arena results on descriptive tasks, surpassing existing benchmarks for vision-language models. Additionally, we present an automatic fine-grained feedback collection method, FeedQuill, for preference optimization based on our advanced metric, showing robust generalization capabilities across auto-generated preference data. Extensive experiments on multiple VLMs demonstrate that our method not only significantly reduces hallucinations but also enhances performance across various benchmarks, achieving superior detail captioning performance while surpassing GPT-4o.
- Abstract(参考訳): 画像キャプションは視覚理解において長い間重要な課題であり、近年の視覚言語モデル(VLM)の発展により、詳細な画像キャプションを生成する能力が著しく向上している。
しかし, 詳細な画像キャプションの評価は, 古くなった評価指標や粗いアノテーションにより, 未解決のままである。
本稿では,DeCapBenchと,詳細なキャプションタスクに特化して設計された新しいメトリクスDCScoreを紹介する。
DCScoreは、反応を最小の自己充足単位に分解し、原始情報単位と呼び、それらを個別に評価することで、幻覚ときめ細かな包括性を評価する。
評価の結果,DCScoreは他のルールベースの指標やモデルベースの指標よりも,人間の判断と密接に一致していることがわかった。
同時にDeCapBenchは、視覚言語モデルの既存のベンチマークを上回りながら、記述タスクにおけるVLMアリーナの結果と高い相関を示す。
さらに,我々の先進的な指標に基づく選好最適化のためのフィードバック自動収集手法FeedQuillを提案し,自動生成選好データにまたがる堅牢な一般化機能を示す。
複数のVLMに対する大規模な実験により,本手法は幻覚を著しく低減するだけでなく,様々なベンチマークにおける性能も向上し,GPT-4oを超える精度でキャプション性能が向上することが示された。
関連論文リスト
- Toward Robust Hyper-Detailed Image Captioning: A Multiagent Approach and Dual Evaluation Metrics for Factuality and Coverage [50.84150600032693]
MLLM(Multimodal large language model)は、非常に詳細なキャプションを生成するのに優れるが、幻覚を引き起こすことが多い。
我々は,LLM-MLLM協調を利用して与えられたキャプションを補正するマルチエージェント手法を提案する。
提案手法は, キャプションの精度を向上し, GPT-4Vによるキャプションの精度を向上する。
論文 参考訳(メタデータ) (2024-12-20T01:37:22Z) - Benchmarking Large Vision-Language Models via Directed Scene Graph for Comprehensive Image Captioning [77.2852342808769]
本稿では、シーングラフビューから視覚的コンテキストを評価するために、CompreCapと呼ばれる詳細なキャプションベンチマークを導入する。
画像は、まず、共通オブジェクトの語彙に従って意味的に意味のある領域に手動で分割し、また、これらすべての領域内のオブジェクトの属性を識別する。
そして、これらのオブジェクトの方向関係ラベルに注釈を付け、画像のリッチな構成情報を十分にエンコードできる方向のシーングラフを構成する。
論文 参考訳(メタデータ) (2024-12-11T18:37:42Z) - BRIDGE: Bridging Gaps in Image Captioning Evaluation with Stronger Visual Cues [47.213906345208315]
本稿では,新たな学習可能かつ参照不要な画像キャプション指標BRIDGEを提案する。
提案手法は,既存の基準フリー評価スコアと比較して,最先端の結果が得られる。
論文 参考訳(メタデータ) (2024-07-29T18:00:17Z) - Do More Details Always Introduce More Hallucinations in LVLM-based Image Captioning? [29.237078890377514]
LVLM(Large Vision-Language Models)は、視覚的コンテキストと言語的コンテキストを統合することで、詳細なコンテンツを生成する。
LVLMを使用して記述を生成すると、出力テキストが入力画像内の実際のオブジェクトを誤って表現するオブジェクト幻覚(OH)の課題に直面します。
本稿では,新しい復号化戦略である微分ビーム復号法(DBD)と信頼性の高い新しい評価指標を提案する。
論文 参考訳(メタデータ) (2024-06-18T14:33:56Z) - Benchmarking and Improving Detail Image Caption [12.078715675876674]
視覚言語モデル (LVLM) は視覚理解の基本的な課題とされてきた。
本稿では,人間専門家が注釈付けした高品質な評価データセットをキュレートすることで,詳細な画像キャプションタスクのベンチマークを行う。
また、CAPTUREと呼ばれるより信頼性の高いキャプション評価指標も設計する。
論文 参考訳(メタデータ) (2024-05-29T13:54:12Z) - Vision Language Model-based Caption Evaluation Method Leveraging Visual
Context Extraction [27.00018283430169]
本稿では視覚言語モデルに基づくキャプション評価手法VisCE$2$を提案する。
本手法は,オブジェクト,属性,関係性を含む画像の詳細な内容を参照する視覚的コンテキストに焦点をあてる。
論文 参考訳(メタデータ) (2024-02-28T01:29:36Z) - Prompt-based Learning for Unpaired Image Captioning [86.44188293709307]
Unpaired Image Captioning (UIC) は、非整合視覚言語サンプルペアから画像記述を学習するために開発された。
近年のVision-Language Pre-Trained Models (VL-PTMs) の成功は、プロンプトベース学習の発展を引き起こしている。
本稿では,UICモデルをトレーニングするためのプロンプトに基づく新しいスキームを提案し,その強力な一般化能力を最大限に活用する。
論文 参考訳(メタデータ) (2022-05-26T03:13:43Z) - Intrinsic Image Captioning Evaluation [53.51379676690971]
I2CE(Intrinsic Image Captioning Evaluation)と呼ばれる画像キャプションのための学習ベースメトリクスを提案する。
実験の結果,提案手法は頑健な性能を維持し,意味的類似表現やアライメントの少ない意味論に遭遇した場合,候補キャプションに対してより柔軟なスコアを与えることができた。
論文 参考訳(メタデータ) (2020-12-14T08:36:05Z) - Improving Image Captioning with Better Use of Captions [65.39641077768488]
本稿では,画像表現とキャプション生成の両方を強化するために,キャプションで利用可能なセマンティクスをよりよく探求するための新しい画像キャプションアーキテクチャを提案する。
我々のモデルはまず,弱教師付きマルチインスタンス学習を用いて,有益な帰納バイアスをもたらすキャプション誘導型視覚関係グラフを構築した。
生成期間中、このモデルは、単語とオブジェクト/述語タグのシーケンスを共同で予測するために、マルチタスク学習を用いた視覚関係をさらに取り入れる。
論文 参考訳(メタデータ) (2020-06-21T14:10:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。