From ML to LLM: Evaluating the Robustness of Phishing Webpage Detection Models against Adversarial Attacks
- URL: http://arxiv.org/abs/2407.20361v2
- Date: Wed, 18 Sep 2024 16:07:40 GMT
- Title: From ML to LLM: Evaluating the Robustness of Phishing Webpage Detection Models against Adversarial Attacks
- Authors: Aditya Kulkarni, Vivek Balachandran, Dinil Mon Divakaran, Tamal Das,
- Abstract summary: Phishing attacks attempt to deceive users into stealing sensitive information.
Current phishing webpage detection solutions are vulnerable to adversarial attacks.
We develop a tool that generates adversarial phishing webpages by embedding diverse phishing features into legitimate webpages.
- Score: 0.8050163120218178
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Phishing attacks attempt to deceive users into stealing sensitive information, posing a significant cybersecurity threat. Advances in machine learning (ML) and deep learning (DL) have led to the development of numerous phishing webpage detection solutions, but these models remain vulnerable to adversarial attacks. Evaluating their robustness against adversarial phishing webpages is essential. Existing tools contain datasets of pre-designed phishing webpages for a limited number of brands, and lack diversity in phishing features. To address these challenges, we develop PhishOracle, a tool that generates adversarial phishing webpages by embedding diverse phishing features into legitimate webpages. We evaluate the robustness of two existing models, Stack model and Phishpedia, in classifying PhishOracle-generated adversarial phishing webpages. Additionally, we study a commercial large language model, Gemini Pro Vision, in the context of adversarial attacks. We conduct a user study to determine whether PhishOracle-generated adversarial phishing webpages deceive users. Our findings reveal that many PhishOracle-generated phishing webpages evade current phishing webpage detection models and deceive users, but Gemini Pro Vision is robust to the attack. We also develop the PhishOracle web app, allowing users to input a legitimate URL, select relevant phishing features and generate a corresponding phishing webpage. All resources are publicly available on GitHub.
Related papers
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - NoPhish: Efficient Chrome Extension for Phishing Detection Using Machine Learning Techniques [0.0]
"NoPhish" shall identify a phishing webpage based on several Machine Learning techniques.
We have used the training dataset from "PhishTank" and extracted the 22 most popular features.
The performance results show that Random Forest delivers the best precision.
arXiv Detail & Related papers (2024-09-01T18:59:14Z) - TrojFM: Resource-efficient Backdoor Attacks against Very Large Foundation Models [69.37990698561299]
TrojFM is a novel backdoor attack tailored for very large foundation models.
Our approach injects backdoors by fine-tuning only a very small proportion of model parameters.
We demonstrate that TrojFM can launch effective backdoor attacks against widely used large GPT-style models.
arXiv Detail & Related papers (2024-05-27T03:10:57Z) - EmInspector: Combating Backdoor Attacks in Federated Self-Supervised Learning Through Embedding Inspection [53.25863925815954]
Federated self-supervised learning (FSSL) has emerged as a promising paradigm that enables the exploitation of clients' vast amounts of unlabeled data.
While FSSL offers advantages, its susceptibility to backdoor attacks has not been investigated.
We propose the Embedding Inspector (EmInspector) that detects malicious clients by inspecting the embedding space of local models.
arXiv Detail & Related papers (2024-05-21T06:14:49Z) - "Are Adversarial Phishing Webpages a Threat in Reality?" Understanding the Users' Perception of Adversarial Webpages [21.474375992224633]
Machine learning based phishing website detectors (ML-PWD) are a critical part of today's anti-phishing solutions in operation.
We show that adversarial phishing is a threat to both users and ML-PWD.
We also show that users' self-reported frequency of visiting a brand's website has a statistically negative correlation with their phishing detection accuracy.
arXiv Detail & Related papers (2024-04-03T16:10:17Z) - Mitigating Bias in Machine Learning Models for Phishing Webpage Detection [0.8050163120218178]
Phishing, a well-known cyberattack, revolves around the creation of phishing webpages and the dissemination of corresponding URLs.
Various techniques are available for preemptively categorizing zero-day phishing URLs by distilling unique attributes and constructing predictive models.
This proposal delves into persistent challenges within phishing detection solutions, particularly concentrated on the preliminary phase of assembling comprehensive datasets.
We propose a potential solution in the form of a tool engineered to alleviate bias in ML models.
arXiv Detail & Related papers (2024-01-16T13:45:54Z) - "Do Users fall for Real Adversarial Phishing?" Investigating the Human response to Evasive Webpages [7.779975012737389]
State-of-the-art solutions entail the application of machine learning to detect phishing websites by checking if they visually resemble webpages of well-known brands.
Some security companies began to deploy them also in their phishing detection systems (PDS)
In this paper, we scrutinize whether 'genuine phishing websites' that evade 'commercial ML-based PDS' represent a problem "in reality"
arXiv Detail & Related papers (2023-11-28T00:08:48Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Detecting Phishing Sites -- An Overview [0.0]
Phishing is one of the most severe cyber-attacks where researchers are interested to find a solution.
To minimize the damage caused by phishing must be detected as early as possible.
There are various phishing detection techniques based on white-list, black-list, content-based, URL-based, visual-similarity and machine-learning.
arXiv Detail & Related papers (2021-03-23T19:16:03Z) - Robust and Verifiable Information Embedding Attacks to Deep Neural
Networks via Error-Correcting Codes [81.85509264573948]
In the era of deep learning, a user often leverages a third-party machine learning tool to train a deep neural network (DNN) classifier.
In an information embedding attack, an attacker is the provider of a malicious third-party machine learning tool.
In this work, we aim to design information embedding attacks that are verifiable and robust against popular post-processing methods.
arXiv Detail & Related papers (2020-10-26T17:42:42Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
Phishing attacks have become the most used technique in the online scams, initiating more than 91% of cyberattacks, from 2012 onwards.
This study reviews how Phishing and Spear Phishing attacks are carried out by the phishers, through 5 steps which magnify the outcome.
arXiv Detail & Related papers (2020-05-31T18:10:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.