NoPhish: Efficient Chrome Extension for Phishing Detection Using Machine Learning Techniques
- URL: http://arxiv.org/abs/2409.10547v1
- Date: Sun, 1 Sep 2024 18:59:14 GMT
- Title: NoPhish: Efficient Chrome Extension for Phishing Detection Using Machine Learning Techniques
- Authors: Leand Thaqi, Arbnor Halili, Kamer Vishi, Blerim Rexha,
- Abstract summary: "NoPhish" shall identify a phishing webpage based on several Machine Learning techniques.
We have used the training dataset from "PhishTank" and extracted the 22 most popular features.
The performance results show that Random Forest delivers the best precision.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growth of digitalization services via web browsers has simplified our daily routine of doing business. But at the same time, it has made the web browser very attractive for several cyber-attacks. Web phishing is a well-known cyberattack that is used by attackers camouflaging as trustworthy web servers to obtain sensitive user information such as credit card numbers, bank information, personal ID, social security number, and username and passwords. In recent years many techniques have been developed to identify the authentic web pages that users visit and warn them when the webpage is phishing. In this paper, we have developed an extension for Chrome the most favorite web browser, that will serve as a middleware between the user and phishing websites. The Chrome extension named "NoPhish" shall identify a phishing webpage based on several Machine Learning techniques. We have used the training dataset from "PhishTank" and extracted the 22 most popular features as rated by the Alexa database. The training algorithms used are Random Forest, Support Vector Machine, and k-Nearest Neighbor. The performance results show that Random Forest delivers the best precision.
Related papers
- How Unique is Whose Web Browser? The role of demographics in browser fingerprinting among US users [50.699390248359265]
Browser fingerprinting can be used to identify and track users across the Web, even without cookies.
This technique and resulting privacy risks have been studied for over a decade.
We provide a first-of-its-kind dataset to enable further research.
arXiv Detail & Related papers (2024-10-09T14:51:58Z) - PhishLang: A Lightweight, Client-Side Phishing Detection Framework using MobileBERT for Real-Time, Explainable Threat Mitigation [3.014087730099599]
In this paper, we introduce PhishLang, an open-source, lightweight language model specifically designed for phishing website detection.
We use MobileBERT, a fast and memory-efficient variant of the BERT architecture, to learn granular features characteristic of phishing attacks.
Over a 3.5-month testing period, PhishLang successfully identified 25,796 phishing URLs.
arXiv Detail & Related papers (2024-08-11T01:14:13Z) - From ML to LLM: Evaluating the Robustness of Phishing Webpage Detection Models against Adversarial Attacks [0.8050163120218178]
Phishing attacks attempt to deceive users into stealing sensitive information.
Current phishing webpage detection solutions are vulnerable to adversarial attacks.
We develop a tool that generates adversarial phishing webpages by embedding diverse phishing features into legitimate webpages.
arXiv Detail & Related papers (2024-07-29T18:21:34Z) - PhishNet: A Phishing Website Detection Tool using XGBoost [1.777434178384403]
PhisNet is a cutting-edge web application designed to detect phishing websites using advanced machine learning.
It aims to help individuals and organizations identify and prevent phishing attacks through a robust AI framework.
arXiv Detail & Related papers (2024-06-29T21:31:13Z) - Next Generation of Phishing Attacks using AI powered Browsers [0.0]
The model had an accuracy of 98.32%, precision of 98.62%, recall of 97.86%, and an F1-score of 98.24%.
The zero-day phishing attack detection testing over a 15-day period revealed the model's capability to identify previously unseen threats.
The model had successfully detected phishing URLs that evaded detection by Google safe browsing.
arXiv Detail & Related papers (2024-06-18T12:24:36Z) - KnowPhish: Large Language Models Meet Multimodal Knowledge Graphs for Enhancing Reference-Based Phishing Detection [36.014171641453615]
We propose an automated knowledge collection pipeline, containing 20k brands with rich information about each brand.
KnowPhish can be used to boost the performance of existing reference-based phishing detectors.
Our resulting multimodal phishing detection approach, KnowPhish Detector, can detect phishing webpages with or without logos.
arXiv Detail & Related papers (2024-03-04T17:38:32Z) - Cleaner Pretraining Corpus Curation with Neural Web Scraping [39.97459187762505]
This paper presents a simple, fast, and effective Neural web Scraper (NeuScraper) to help extract primary and clean text contents from webpages.
Experimental results show that NeuScraper surpasses the baseline scrapers by achieving more than a 20% improvement.
arXiv Detail & Related papers (2024-02-22T16:04:03Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
This paper introduces a dynamic deep ensemble model for spam detection that adjusts its complexity and extracts features automatically.
As a result, the model achieved high precision, recall, f1-score and accuracy of 98.38%.
arXiv Detail & Related papers (2021-10-10T17:19:37Z) - Detecting Phishing Sites -- An Overview [0.0]
Phishing is one of the most severe cyber-attacks where researchers are interested to find a solution.
To minimize the damage caused by phishing must be detected as early as possible.
There are various phishing detection techniques based on white-list, black-list, content-based, URL-based, visual-similarity and machine-learning.
arXiv Detail & Related papers (2021-03-23T19:16:03Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
Phishing attacks have become the most used technique in the online scams, initiating more than 91% of cyberattacks, from 2012 onwards.
This study reviews how Phishing and Spear Phishing attacks are carried out by the phishers, through 5 steps which magnify the outcome.
arXiv Detail & Related papers (2020-05-31T18:10:09Z) - Arms Race in Adversarial Malware Detection: A Survey [33.8941961394801]
Malicious software (malware) is a major cyber threat that has to be tackled with Machine Learning (ML) techniques.
ML is vulnerable to attacks known as adversarial examples.
Knowing the defender's feature set is critical to the success of transfer attacks.
The effectiveness of adversarial training depends on the defender's capability in identifying the most powerful attack.
arXiv Detail & Related papers (2020-05-24T07:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.