論文の概要: MEVDT: Multi-Modal Event-Based Vehicle Detection and Tracking Dataset
- arxiv url: http://arxiv.org/abs/2407.20446v1
- Date: Mon, 29 Jul 2024 22:57:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 18:48:44.330331
- Title: MEVDT: Multi-Modal Event-Based Vehicle Detection and Tracking Dataset
- Title(参考訳): MEVDT:マルチモードイベントベース車両検出・追跡データセット
- Authors: Zaid A. El Shair, Samir A. Rawashdeh,
- Abstract要約: 本稿では,Multi-Modal Event-based Vehicle Detection and Tracking (MEVDT)データセットを紹介する。
このデータセットは、Dynamic and Active-Pixel Vision Sensor (DAVIS) 240cハイブリッドイベントセンサを使用してキャプチャされた、イベントデータの同期ストリームとトラフィックシーンのグレースケールイメージを提供する。
- 参考スコア(独自算出の注目度): 1.5837772594006034
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this data article, we introduce the Multi-Modal Event-based Vehicle Detection and Tracking (MEVDT) dataset. This dataset provides a synchronized stream of event data and grayscale images of traffic scenes, captured using the Dynamic and Active-Pixel Vision Sensor (DAVIS) 240c hybrid event-based camera. MEVDT comprises 63 multi-modal sequences with approximately 13k images, 5M events, 10k object labels, and 85 unique object tracking trajectories. Additionally, MEVDT includes manually annotated ground truth labels $\unicode{x2014}$ consisting of object classifications, pixel-precise bounding boxes, and unique object IDs $\unicode{x2014}$ which are provided at a labeling frequency of 24 Hz. Designed to advance the research in the domain of event-based vision, MEVDT aims to address the critical need for high-quality, real-world annotated datasets that enable the development and evaluation of object detection and tracking algorithms in automotive environments.
- Abstract(参考訳): 本稿では,Multi-Modal Event-based Vehicle Detection and Tracking (MEVDT)データセットを紹介する。
このデータセットは、Dynamic and Active-Pixel Vision Sensor (DAVIS) 240cハイブリッドイベントベースのカメラを使用して、イベントデータの同期ストリームとトラフィックシーンのグレースケールイメージを提供する。
MEVDTは63のマルチモーダルシーケンスで構成され、約13kイメージ、5Mイベント、10kオブジェクトラベル、85のユニークなオブジェクト追跡トラジェクトリを含んでいる。
さらに、MEVDTには、オブジェクト分類、ピクセル精度境界ボックス、および24Hzのラベリング周波数で提供されるユニークなオブジェクトIDからなる、手動で注釈付き基底真理ラベル $\unicode{x2014}$が含まれている。
MEVDTは、イベントベースのビジョンの分野での研究を進めるために設計されたもので、自動車環境におけるオブジェクト検出と追跡アルゴリズムの開発と評価を可能にする、高品質で現実世界の注釈付きデータセットに対する重要なニーズに対処することを目的としている。
関連論文リスト
- Event Stream based Human Action Recognition: A High-Definition Benchmark Dataset and Algorithms [29.577583619354314]
本稿では,CeleX-Vイベントカメラを用いた大規模かつ高精細度(1280×800ドル)の人間行動認識データセットを提案する。
より包括的なベンチマークデータセットを構築するために、今後比較する作業のために、20以上の主流なHARモデルを報告します。
論文 参考訳(メタデータ) (2024-08-19T07:52:20Z) - DailyDVS-200: A Comprehensive Benchmark Dataset for Event-Based Action Recognition [51.96660522869841]
DailyDVS-200は、イベントベースのアクション認識コミュニティに適したベンチマークデータセットである。
実世界のシナリオで200のアクションカテゴリをカバーし、47人の参加者によって記録され、22,000以上のイベントシーケンスで構成されている。
DailyDVS-200には14の属性がアノテートされており、記録されたアクションの詳細なキャラクタリゼーションが保証されている。
論文 参考訳(メタデータ) (2024-07-06T15:25:10Z) - MTMMC: A Large-Scale Real-World Multi-Modal Camera Tracking Benchmark [63.878793340338035]
マルチターゲットマルチカメラトラッキングは、複数のカメラからのビデオストリームを使用して個人を特定し、追跡する重要なタスクである。
このタスクの既存のデータセットは、制御されたカメラネットワーク設定内で合成または人工的に構築される。
我々は16台のマルチモーダルカメラで2つの異なる環境でキャプチャされた長いビデオシーケンスを含む実世界の大規模データセットであるMTMMCを紹介する。
論文 参考訳(メタデータ) (2024-03-29T15:08:37Z) - SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOTはイベントベースのマルチオブジェクトトラッカーである。
SpikeMOTはスパイクニューラルネットワークを使用して、オブジェクトに関連するイベントストリームからスパーステンポラルな特徴を抽出する。
論文 参考訳(メタデータ) (2023-09-29T05:13:43Z) - Dual Memory Aggregation Network for Event-Based Object Detection with
Learnable Representation [79.02808071245634]
イベントベースのカメラはバイオインスパイアされたセンサーで、各ピクセルの明るさ変化を非同期に捉える。
イベントストリームは、正極性と負極性の両方のためにx-y-t座標の格子に分割され、3次元テンソル表現として柱の集合が生成される。
長メモリは適応型convLSTMの隠れ状態に符号化され、短メモリはイベントピラー間の空間的時間的相関を計算することによってモデル化される。
論文 参考訳(メタデータ) (2023-03-17T12:12:41Z) - Synthehicle: Multi-Vehicle Multi-Camera Tracking in Virtual Cities [4.4855664250147465]
複数の車両の追跡とセグメンテーションのための大規模な合成データセットを複数重なり合うカメラビューと非重なり合うカメラビューで提示する。
データセットは17時間のラベル付きビデオ素材で構成され、64の異なる日、雨、夜のシーンで340台のカメラから記録されている。
論文 参考訳(メタデータ) (2022-08-30T11:36:07Z) - TUM-VIE: The TUM Stereo Visual-Inertial Event Dataset [50.8779574716494]
イベントカメラはバイオインスパイアされた視覚センサーで、ピクセルごとの明るさの変化を測定する。
これらは、低レイテンシ、高ダイナミックレンジ、高時間分解能、低消費電力など、従来のフレームベースのカメラよりも多くの利点を提供する。
イベントカメラを用いた3次元認識・ナビゲーションアルゴリズムの開発を促進するため,TUM-VIEデータセットを提案する。
論文 参考訳(メタデータ) (2021-08-16T19:53:56Z) - Track to Detect and Segment: An Online Multi-Object Tracker [81.15608245513208]
TraDeSは、エンドツーエンドの検出を支援するために追跡の手がかりを利用するオンライン共同検出および追跡モデルです。
TraDeSは、以前のオブジェクトの機能を伝播するために使用されるコストボリュームでオブジェクト追跡オフセットを推測します。
論文 参考訳(メタデータ) (2021-03-16T02:34:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。