論文の概要: Graphite: A Graph-based Extreme Multi-Label Short Text Classifier for Keyphrase Recommendation
- arxiv url: http://arxiv.org/abs/2407.20462v1
- Date: Mon, 29 Jul 2024 23:41:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 18:38:42.389062
- Title: Graphite: A Graph-based Extreme Multi-Label Short Text Classifier for Keyphrase Recommendation
- Title(参考訳): Graphite: キーワードレコメンデーションのためのグラフベースのエクストリームマルチラベルショートテキスト分類器
- Authors: Ashirbad Mishra, Soumik Dey, Jinyu Zhao, Marshall Wu, Binbin Li, Kamesh Madduri,
- Abstract要約: Keyphrase Recommendationは、広告とeコマースにおいて重要な問題である。
従来のニューラルネットワークモデルは、大きなラベル空間のために実現不可能か、推論が遅いかのいずれかである。
本稿では,標準的なテキスト分類モデルに匹敵するリアルタイムなキーワードレコメンデーションを提供するグラフベースモデルを提案する。
- 参考スコア(独自算出の注目度): 3.4693396519698108
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Keyphrase Recommendation has been a pivotal problem in advertising and e-commerce where advertisers/sellers are recommended keyphrases (search queries) to bid on to increase their sales. It is a challenging task due to the plethora of items shown on online platforms and various possible queries that users search while showing varying interest in the displayed items. Moreover, query/keyphrase recommendations need to be made in real-time and in a resource-constrained environment. This problem can be framed as an Extreme Multi-label (XML) Short text classification by tagging the input text with keywords as labels. Traditional neural network models are either infeasible or have slower inference latency due to large label spaces. We present Graphite, a graph-based classifier model that provides real-time keyphrase recommendations that are on par with standard text classification models. Furthermore, it doesn't utilize GPU resources, which can be limited in production environments. Due to its lightweight nature and smaller footprint, it can train on very large datasets, where state-of-the-art XML models fail due to extreme resource requirements. Graphite is deterministic, transparent, and intrinsically more interpretable than neural network-based models. We present a comprehensive analysis of our model's performance across forty categories spanning eBay's English-speaking sites.
- Abstract(参考訳): Keyphrase Recommendationは、広告とeコマースにおいて重要な問題であり、広告主/販売者は、販売を増やすために入札するキーフレーズ(検索クエリ)を推奨している。
オンラインプラットフォームに表示されている項目の多さや、表示された項目に対する様々な関心を示しながらユーザーが検索する可能性のある様々なクエリが原因で、これは困難な課題である。
さらに、クエリ/キーフレーズのレコメンデーションは、リアルタイムで、リソース制約のある環境で行う必要がある。
この問題は Extreme Multi-label (XML) Short text classification by tagging the input text with keywords as labels。
従来のニューラルネットワークモデルは、大きなラベル空間のために実現不可能か、推論遅延が遅いかのいずれかである。
グラフベースの分類モデルであるGraphiteは、標準的なテキスト分類モデルと同等のリアルタイムキーフレーズレコメンデーションを提供する。
さらに、プロダクション環境で制限されるGPUリソースを使用しない。
軽量な性質とフットプリントの小さいため、非常に大きなデータセットでトレーニングすることが可能で、最先端のXMLモデルは極端なリソース要求のために失敗する。
Graphiteは、ニューラルネットワークベースのモデルよりも決定論的、透過的、本質的に解釈可能である。
eBayの英語を話すサイトを対象とする40のカテゴリにわたって、当社のモデルのパフォーマンスを包括的に分析する。
関連論文リスト
- GraphEx: A Graph-based Extraction Method for Advertiser Keyphrase Recommendation [3.167259972777881]
GraphExは革新的なグラフベースのアプローチで、アイテムタイトルからトークンの置換を抽出することで、売り手にキーフレーズを推奨する。
リソース制約のあるプロダクション環境でほぼリアルタイムの推論をサポートし、何十億ものアイテムに対して効果的にスケールする。
論文 参考訳(メタデータ) (2024-09-05T00:25:37Z) - Scribbles for All: Benchmarking Scribble Supervised Segmentation Across Datasets [51.74296438621836]
Scribbles for Allは、スクリブルラベルに基づいて訓練されたセマンティックセグメンテーションのためのラベルおよびトレーニングデータ生成アルゴリズムである。
弱い監督の源泉としてのスクリブルの主な制限は、スクリブルセグメンテーションのための挑戦的なデータセットの欠如である。
Scribbles for Allは、いくつかの人気のあるセグメンテーションデータセットのスクリブルラベルを提供し、密集したアノテーションを持つデータセットのスクリブルラベルを自動的に生成するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2024-08-22T15:29:08Z) - Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
最近の基礎言語モデルでは、ゼロショットや少数ショットの設定で多くのNLPタスクで最先端のパフォーマンスが示されている。
より標準的なアプローチよりもこれらのモデルの利点は、自然言語(prompts)で書かれた命令を理解する能力である。
これにより、アノテーション付きインスタンスが限られているドメインのテキスト分類問題に対処するのに適している。
論文 参考訳(メタデータ) (2024-03-26T12:47:39Z) - Hierarchical Knowledge Distillation on Text Graph for Data-limited
Attribute Inference [5.618638372635474]
我々は,ソーシャルメディアのテキストデータに基づく属性推論のためのテキストグラフに基づく少ショット学習モデルを開発した。
我々のモデルはまず、多様体学習とメッセージパッシングを用いてテキストグラフを構築し、洗練する。
クロスドメインテキストと未ラベルテキストをさらに活用して、少数ショットのパフォーマンスを向上させるために、テキストグラフ上で階層的な知識蒸留が考案される。
論文 参考訳(メタデータ) (2024-01-10T05:50:34Z) - GraphextQA: A Benchmark for Evaluating Graph-Enhanced Large Language
Models [33.56759621666477]
本稿では,言語モデルへのグラフ知識の統合を評価するためのベンチマークデータセットを提案する。
提案したデータセットは,グラフの理解能力を評価し,回答生成に利用するように設計されている。
言語のみのモデルと提案したグラフ言語モデルを用いて,ペアグラフの有用性を検証し,課題の難しさを実証する。
論文 参考訳(メタデータ) (2023-10-12T16:46:58Z) - Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
ノイズの多いラベルからの学習は、実際のアプリケーションのための機械学習において、重要かつ長年にわたる問題である。
本稿では,生成モデルの観点からラベルノイズ問題を再構成する。
我々のモデルは、標準的な実世界のベンチマークデータセットで新しいSOTA(State-of-the-art)結果を達成する。
論文 参考訳(メタデータ) (2023-05-31T03:01:36Z) - ConGraT: Self-Supervised Contrastive Pretraining for Joint Graph and Text Embeddings [20.25180279903009]
テキスト分散グラフ(TAG)におけるテキストとノードの分離表現を共同学習するためのContrastive Graph-Text Pretraining(ConGraT)を提案する。
提案手法は言語モデル(LM)とグラフニューラルネットワーク(GNN)を訓練し,CLIPにインスパイアされたバッチワイドコントラスト学習目標を用いて,それらの表現を共通の潜在空間に整列させる。
実験により、ConGraTは、ノードとテキストのカテゴリ分類、リンク予測、言語モデリングなど、さまざまな下流タスクのベースラインよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-05-23T17:53:30Z) - Visually-Prompted Language Model for Fine-Grained Scene Graph Generation
in an Open World [67.03968403301143]
SGG(Scene Graph Generation)は、視覚理解のための画像中の主観的、述語的、対象的な関係を抽出することを目的としている。
既存の再バランス戦略は、以前のルールを通じてそれを処理しようとするが、まだ事前に定義された条件に制限されている。
そこで我々は,多種多様な粒度の述語を生成するために,視覚的にプロンプトされた言語モデルを学習するクロスモーダルプレディケイトブースティング(CaCao)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-23T13:06:38Z) - Be More with Less: Hypergraph Attention Networks for Inductive Text
Classification [56.98218530073927]
グラフニューラルネットワーク(GNN)は、研究コミュニティで注目され、この標準タスクで有望な結果を実証している。
成功にもかかわらず、それらのパフォーマンスは、単語間の高次相互作用をキャプチャできないため、実際は大部分が危険に晒される可能性がある。
本稿では,テキスト表現学習において,少ない計算量でより表現力の高いハイパーグラフアテンションネットワーク(HyperGAT)を提案する。
論文 参考訳(メタデータ) (2020-11-01T00:21:59Z) - Item Tagging for Information Retrieval: A Tripartite Graph Neural
Network based Approach [44.75731013014112]
本稿では,アイテムノードとタグノード間のリンク予測問題として,アイテムタグの定式化を提案する。
この定式化により、多種類のノードとエッジを持つ異種グラフニューラルネットワークを利用するTagGNNモデルが得られる。
オープンデータセットとインダストリアルデータセットの両方の実験結果から,我々のTagGNNアプローチは最先端のマルチラベル分類手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-08-26T13:58:19Z) - Comprehensive Information Integration Modeling Framework for Video
Titling [124.11296128308396]
エンド・ツー・エンド・エンド・モデリング・フレームワークにおいて、消費者生成ビデオの内容、消費者から提供される物語コメント文、製品属性などの包括的情報ソースを統合する。
この問題に対処するため,提案手法は,粒度レベルの相互作用モデリングと抽象レベルのストーリーライン要約という2つのプロセスから構成される。
グローバルなeコマースプラットフォームであるTaobaoの実際のデータから、大規模なデータセットを収集します。
論文 参考訳(メタデータ) (2020-06-24T10:38:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。