Distribution Learning for Molecular Regression
- URL: http://arxiv.org/abs/2407.20475v1
- Date: Tue, 30 Jul 2024 00:21:51 GMT
- Title: Distribution Learning for Molecular Regression
- Authors: Nima Shoghi, Pooya Shoghi, Anuroop Sriram, Abhishek Das,
- Abstract summary: Distributional Mixture of Experts (DMoE) is a model-independent, and data-independent method for regression.
We evaluate the performance of DMoE on different molecular property prediction datasets.
- Score: 10.96062816455682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using "soft" targets to improve model performance has been shown to be effective in classification settings, but the usage of soft targets for regression is a much less studied topic in machine learning. The existing literature on the usage of soft targets for regression fails to properly assess the method's limitations, and empirical evaluation is quite limited. In this work, we assess the strengths and drawbacks of existing methods when applied to molecular property regression tasks. Our assessment outlines key biases present in existing methods and proposes methods to address them, evaluated through careful ablation studies. We leverage these insights to propose Distributional Mixture of Experts (DMoE): A model-independent, and data-independent method for regression which trains a model to predict probability distributions of its targets. Our proposed loss function combines the cross entropy between predicted and target distributions and the L1 distance between their expected values to produce a loss function that is robust to the outlined biases. We evaluate the performance of DMoE on different molecular property prediction datasets -- Open Catalyst (OC20), MD17, and QM9 -- across different backbone model architectures -- SchNet, GemNet, and Graphormer. Our results demonstrate that the proposed method is a promising alternative to classical regression for molecular property prediction tasks, showing improvements over baselines on all datasets and architectures.
Related papers
- Predictability Analysis of Regression Problems via Conditional Entropy Estimations [1.8913544072080544]
Conditional entropy estimators are developed to assess predictability in regression problems.
Experiments on synthesized and real-world datasets demonstrate the robustness and utility of these estimators.
arXiv Detail & Related papers (2024-06-06T07:59:19Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
Federated Learning (FL) typically aggregates client model parameters using a weighting approach determined by sample proportions.
We replace the aforementioned weighting method with a new strategy that considers the generalization bounds of each local model.
arXiv Detail & Related papers (2023-11-10T08:50:28Z) - Surrogate uncertainty estimation for your time series forecasting black-box: learn when to trust [2.0393477576774752]
Our research introduces a method for uncertainty estimation.
It enhances any base regression model with reasonable uncertainty estimates.
Using various time-series forecasting data, we found that our surrogate model-based technique delivers significantly more accurate confidence intervals.
arXiv Detail & Related papers (2023-02-06T14:52:56Z) - Value Gradient weighted Model-Based Reinforcement Learning [28.366157882991565]
Model-based reinforcement learning (MBRL) is a sample efficient technique to obtain control policies.
VaGraM is a novel method for value-aware model learning.
arXiv Detail & Related papers (2022-04-04T13:28:31Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
This work focuses on quantifying, reducing and analyzing regression errors in the NLP model updates.
We formulate the regression-free model updates into a constrained optimization problem.
We empirically analyze how model ensemble reduces regression.
arXiv Detail & Related papers (2021-05-07T03:33:00Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
We investigate how to bridge the gap between real and simulated data due to inaccurate model estimation for better policy optimization.
We propose a novel model-based reinforcement learning framework AMPO, which introduces unsupervised model adaptation.
Our approach achieves state-of-the-art performance in terms of sample efficiency on a range of continuous control benchmark tasks.
arXiv Detail & Related papers (2020-10-19T14:19:42Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
We show that simple model-based agents can outperform state-of-the-art model-free agents in terms of both sample-efficiency and final reward.
Our findings suggest that model-based policy evaluation deserves closer attention.
arXiv Detail & Related papers (2020-08-28T17:58:29Z) - A Locally Adaptive Interpretable Regression [7.4267694612331905]
Linear regression is one of the most interpretable prediction models.
In this work, we introduce a locally adaptive interpretable regression (LoAIR)
Our model achieves comparable or better predictive performance than the other state-of-the-art baselines.
arXiv Detail & Related papers (2020-05-07T09:26:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.