Covariate-dependent Graphical Model Estimation via Neural Networks with Statistical Guarantees
- URL: http://arxiv.org/abs/2504.16356v1
- Date: Wed, 23 Apr 2025 02:13:36 GMT
- Title: Covariate-dependent Graphical Model Estimation via Neural Networks with Statistical Guarantees
- Authors: Jiahe Lin, Yikai Zhang, George Michailidis,
- Abstract summary: We consider settings where the graph structure is co-dependent, and investigate a deep neural network-based approach to estimate it.<n> Theoretical results with PAC guarantees are established for the method, under assumptions commonly used in an Empirical Risk Minimization framework.<n>The performance of the proposed method is evaluated on several synthetic data settings and benchmarked against existing approaches.
- Score: 18.106204331704156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphical models are widely used in diverse application domains to model the conditional dependencies amongst a collection of random variables. In this paper, we consider settings where the graph structure is covariate-dependent, and investigate a deep neural network-based approach to estimate it. The method allows for flexible functional dependency on the covariate, and fits the data reasonably well in the absence of a Gaussianity assumption. Theoretical results with PAC guarantees are established for the method, under assumptions commonly used in an Empirical Risk Minimization framework. The performance of the proposed method is evaluated on several synthetic data settings and benchmarked against existing approaches. The method is further illustrated on real datasets involving data from neuroscience and finance, respectively, and produces interpretable results.
Related papers
- Inferring Outcome Means of Exponential Family Distributions Estimated by Deep Neural Networks [5.909780773881451]
inference on deep neural networks (DNNs) for categorical or exponential family outcomes remains underexplored.<n>We propose a DNN estimator under generalized nonparametric regression models (GNRMs) and developing a rigorous inference framework.<n>We further apply the method to the electronic Intensive Care Unit (eICU) dataset to predict ICU risk and offer patient-centric insights for clinical decision-making.
arXiv Detail & Related papers (2025-04-12T21:32:42Z) - Identifiable Multi-View Causal Discovery Without Non-Gaussianity [63.217175519436125]
We propose a novel approach to linear causal discovery in the framework of multi-view Structural Equation Models (SEM)<n>We prove the identifiability of all the parameters of the model without any further assumptions on the structure of the SEM other than it being acyclic.<n>The proposed methodology is validated through simulations and application on real data, where it enables the estimation of causal graphs between brain regions.
arXiv Detail & Related papers (2025-02-27T14:06:14Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.<n>The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.<n>The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization [29.24821214671497]
Training machine learning and statistical models often involve optimizing a data-driven risk criterion.
We propose a novel robust criterion by combining insights from Bayesian nonparametric (i.e., Dirichlet process) theory and a recent decision-theoretic model of smooth ambiguity-averse preferences.
For practical implementation, we propose and study tractable approximations of the criterion based on well-known Dirichlet process representations.
arXiv Detail & Related papers (2024-01-28T21:19:15Z) - Distributionally Robust Skeleton Learning of Discrete Bayesian Networks [9.46389554092506]
We consider the problem of learning the exact skeleton of general discrete Bayesian networks from potentially corrupted data.
We propose to optimize the most adverse risk over a family of distributions within bounded Wasserstein distance or KL divergence to the empirical distribution.
We present efficient algorithms and show the proposed methods are closely related to the standard regularized regression approach.
arXiv Detail & Related papers (2023-11-10T15:33:19Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
We propose alternatives to the commonly used finite differences-based method.
We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms.
arXiv Detail & Related papers (2023-11-09T23:32:06Z) - Deep Learning Aided Laplace Based Bayesian Inference for Epidemiological
Systems [2.596903831934905]
We propose a hybrid approach where Laplace-based Bayesian inference is combined with an ANN architecture for obtaining approximations to the ODE trajectories.
The effectiveness of our proposed methods is demonstrated using an epidemiological system with non-analytical solutions, the Susceptible-Infectious-Removed (SIR) model for infectious diseases.
arXiv Detail & Related papers (2022-10-17T09:02:41Z) - Conditional Distribution Function Estimation Using Neural Networks for
Censored and Uncensored Data [0.0]
We consider estimating the conditional distribution function using neural networks for both censored and uncensored data.
We show the proposed method possesses desirable performance, whereas the partial likelihood method yields biased estimates when model assumptions are violated.
arXiv Detail & Related papers (2022-07-06T01:12:22Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
We propose a novel method for performing Bayesian model comparison using specialized deep learning architectures.
Our method is purely simulation-based and circumvents the step of explicitly fitting all alternative models under consideration to each observed dataset.
We show that our method achieves excellent results in terms of accuracy, calibration, and efficiency across the examples considered in this work.
arXiv Detail & Related papers (2020-04-22T15:15:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.