論文の概要: Can LLMs be Fooled? Investigating Vulnerabilities in LLMs
- arxiv url: http://arxiv.org/abs/2407.20529v1
- Date: Tue, 30 Jul 2024 04:08:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 18:19:06.925322
- Title: Can LLMs be Fooled? Investigating Vulnerabilities in LLMs
- Title(参考訳): LLMは保温可能か? LLMの脆弱性を調査する
- Authors: Sara Abdali, Jia He, CJ Barberan, Richard Anarfi,
- Abstract要約: LLM(Large Language Models)の出現は、自然言語処理(NLP)内の様々な領域で大きな人気を集め、膨大なパワーを誇っている。
本稿では,各脆弱性部の知見を合成し,新たな研究・開発の方向性を提案する。
現在の脆弱性の焦点を理解することで、将来のリスクを予測し軽減できます。
- 参考スコア(独自算出の注目度): 4.927763944523323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advent of Large Language Models (LLMs) has garnered significant popularity and wielded immense power across various domains within Natural Language Processing (NLP). While their capabilities are undeniably impressive, it is crucial to identify and scrutinize their vulnerabilities especially when those vulnerabilities can have costly consequences. One such LLM, trained to provide a concise summarization from medical documents could unequivocally leak personal patient data when prompted surreptitiously. This is just one of many unfortunate examples that have been unveiled and further research is necessary to comprehend the underlying reasons behind such vulnerabilities. In this study, we delve into multiple sections of vulnerabilities which are model-based, training-time, inference-time vulnerabilities, and discuss mitigation strategies including "Model Editing" which aims at modifying LLMs behavior, and "Chroma Teaming" which incorporates synergy of multiple teaming strategies to enhance LLMs' resilience. This paper will synthesize the findings from each vulnerability section and propose new directions of research and development. By understanding the focal points of current vulnerabilities, we can better anticipate and mitigate future risks, paving the road for more robust and secure LLMs.
- Abstract(参考訳): LLM(Large Language Models)の出現は大きな人気を集め、自然言語処理(NLP)の様々な領域で大きな影響力を誇っている。
それらの能力は信じられないほど印象的なものだが、脆弱性の特定と精査が不可欠である。
医学文書からの簡潔な要約を提供するために訓練されたLCMは、突然に引き起こされた患者データを無意識に漏洩させる可能性がある。
これは公表された多くの不運な例の1つに過ぎず、そのような脆弱性の背後にある根本的な理由を理解するためにはさらなる研究が必要である。
本研究では、モデルベース、トレーニング時間、推論時脆弱性である脆弱性の複数のセクションを探索し、LLMの振る舞いを変更することを目的とした"モデル編集"や、LLMのレジリエンスを高めるために複数のチーム戦略のシナジーを組み込んだ"クロマチーム"など、緩和戦略について議論する。
本稿では,各脆弱性部の知見を合成し,新たな研究・開発の方向性を提案する。
現在の脆弱性の焦点を理解することで、将来のリスクを予測し軽減し、より堅牢でセキュアなLSMに向けた道を歩むことができます。
関連論文リスト
- Emerging Security Challenges of Large Language Models [6.151633954305939]
大規模言語モデル(LLM)は、多くの異なる分野において短期間で記録的な普及を遂げた。
これらは、特定の下流タスクに合わせて調整されることなく、多様なデータでトレーニングされたオープンエンドモデルである。
従来の機械学習(ML)モデルは、敵の攻撃に対して脆弱である。
論文 参考訳(メタデータ) (2024-12-23T14:36:37Z) - Look Before You Leap: Enhancing Attention and Vigilance Regarding Harmful Content with GuidelineLLM [53.79753074854936]
大規模言語モデル(LLM)は、出現するジェイルブレイク攻撃に対してますます脆弱である。
この脆弱性は現実世界のアプリケーションに重大なリスクをもたらす。
本稿では,ガイドラインLLMという新しい防御パラダイムを提案する。
論文 参考訳(メタデータ) (2024-12-10T12:42:33Z) - Detecting and Understanding Vulnerabilities in Language Models via Mechanistic Interpretability [44.99833362998488]
大規模言語モデル(LLM)は、幅広いタスクで素晴らしいパフォーマンスを示している。
特にLSMは敵攻撃に弱いことが知られており、入力に対する非受容的な変更はモデルの出力を誤解させる可能性がある。
本稿では,メカニスティック・インタプリタビリティ(MI)技術に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T09:55:34Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
LVLM(Large Vision-Language Models)は、多モーダルな理解と推論タスクにまたがる顕著な能力を示す。
LVLMの脆弱性は比較的過小評価されており、日々の使用において潜在的なセキュリティリスクを生じさせる。
本稿では,既存のLVLM攻撃の様々な形態について概説する。
論文 参考訳(メタデータ) (2024-07-10T06:57:58Z) - Towards Explainable Vulnerability Detection with Large Language Models [17.96542494363619]
ソフトウェア脆弱性は、ソフトウェアシステムのセキュリティと整合性に重大なリスクをもたらす。
大規模言語モデル(LLMs)の出現は、その高度な生成能力による変換ポテンシャルを導入している。
本稿では,脆弱性検出と説明という2つのタスクにLLMを専門化する自動フレームワークであるLLMVulExpを提案する。
論文 参考訳(メタデータ) (2024-06-14T04:01:25Z) - Understanding Privacy Risks of Embeddings Induced by Large Language Models [75.96257812857554]
大きな言語モデルは、人工知能の初期の兆候を示すが、幻覚に苦しむ。
1つの有望な解決策は、外部知識を埋め込みとして保存し、LLMを検索強化世代に支援することである。
近年の研究では、事前学習された言語モデルによるテキスト埋め込みから、元のテキストを部分的に再構築できることが実験的に示されている。
論文 参考訳(メタデータ) (2024-04-25T13:10:48Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - Fine-Tuning, Quantization, and LLMs: Navigating Unintended Outcomes [0.0]
大規模言語モデル(LLM)は、チャットボットやオートタスク補完エージェントなど、さまざまな領域で広く採用されている。
これらのモデルは、ジェイルブレイク、プロンプトインジェクション、プライバシリーク攻撃などの安全性上の脆弱性の影響を受けやすい。
本研究では,これらの変更がLLMの安全性に与える影響について検討する。
論文 参考訳(メタデータ) (2024-04-05T20:31:45Z) - Revisiting Jailbreaking for Large Language Models: A Representation Engineering Perspective [43.94115802328438]
最近のジェイルブレイク攻撃の急増により、悪意のある入力に晒された場合、Large Language Models(LLM)の重大な脆弱性が明らかになった。
LLMの自己保護能力は,その表現空間内の特定の行動パターンと関係があることが示唆された。
これらのパターンは,数対のコントラストクエリで検出可能であることを示す。
論文 参考訳(メタデータ) (2024-01-12T00:50:04Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
大規模言語モデル(LLM)を対象とした現在のプライバシ攻撃を分析し、敵の想定能力に応じて分類する。
本稿では、これらのプライバシー攻撃に対抗するために開発された防衛戦略について概説する。
論文 参考訳(メタデータ) (2023-10-16T13:23:54Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
本稿では,現代大規模言語モデル (LLM) の誤用の可能性について検討する。
本研究は, LLMが効果的な誤情報発生器として機能し, DOQAシステムの性能が著しく低下することを明らかにする。
論文 参考訳(メタデータ) (2023-05-23T04:10:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。