論文の概要: Towards Effectively Detecting and Explaining Vulnerabilities Using Large Language Models
- arxiv url: http://arxiv.org/abs/2406.09701v2
- Date: Thu, 8 Aug 2024 06:57:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 19:57:18.313367
- Title: Towards Effectively Detecting and Explaining Vulnerabilities Using Large Language Models
- Title(参考訳): 大規模言語モデルを用いた脆弱性の検出と説明に向けて
- Authors: Qiheng Mao, Zhenhao Li, Xing Hu, Kui Liu, Xin Xia, Jianling Sun,
- Abstract要約: 大規模言語モデル(LLM)は、複雑なコンテキストを解釈する際、顕著な能力を示した。
本稿では,脆弱性の検出と説明の両面において,LSMの能力について検討する。
脆弱性説明のための特別な微調整の下で、LLMVulExpはコードの脆弱性の種類を検出するだけでなく、コードコンテキストを分析して原因、場所、修正提案を生成する。
- 参考スコア(独自算出の注目度): 17.96542494363619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Software vulnerabilities pose significant risks to the security and integrity of software systems. Prior studies have proposed various approaches to vulnerability detection using deep learning or pre-trained models. However, there is still a lack of detailed explanations for understanding vulnerabilities beyond merely detecting their occurrence, which fails to truly help software developers understand and remediate the issues. Recently, large language models (LLMs) have demonstrated remarkable capabilities in comprehending complex contexts and generating content, presenting new opportunities for both detecting and explaining software vulnerabilities. In this paper, we conduct a comprehensive study to investigate the capabilities of LLMs in both detecting and explaining vulnerabilities, and we propose LLMVulExp, a framework that utilizes LLMs for these tasks. Under specialized fine-tuning for vulnerability explanation, our LLMVulExp not only detects the types of vulnerabilities in the code but also analyzes the code context to generate the cause, location, and repair suggestions for these vulnerabilities. These detailed explanations are crucial for helping developers quickly analyze and locate vulnerability issues, providing essential guidance and reference for effective remediation. We find that LLMVulExp can effectively enable the LLMs to perform vulnerability detection (e.g., achieving over a 90\% F1 score on the SeVC dataset) and provide detailed explanations. We also explore the potential of using advanced strategies such as Chain-of-Thought (CoT) to guide the LLMs in concentrating on vulnerability-prone code, achieving promising results.
- Abstract(参考訳): ソフトウェア脆弱性は、ソフトウェアシステムのセキュリティと整合性に重大なリスクをもたらす。
従来の研究では、ディープラーニングや事前学習モデルを用いた脆弱性検出に様々なアプローチが提案されている。
しかし、脆弱性を単に検出するだけでなく、脆弱性を理解するための詳細な説明がまだ残っていないため、ソフトウェア開発者が問題を理解して修正するのに本当に役立ちません。
近年,大規模言語モデル (LLM) は複雑なコンテキストの理解とコンテンツ生成において顕著な能力を示し,ソフトウェア脆弱性の検出と説明に新たな機会を与えている。
本稿では,脆弱性の検出と説明の両面でのLLMの能力を総合的に検討し,これらのタスクにLLMを利用するフレームワークであるLLMVulExpを提案する。
脆弱性説明のための特別な微調整の下で、LLMVulExpはコードの脆弱性の種類を検出するだけでなく、コードコンテキストを分析して、これらの脆弱性の原因、位置、修正提案を生成する。
これらの詳細な説明は、開発者が脆弱性の問題を素早く分析し発見し、効果的な修正のための必須のガイダンスと参照を提供するのに役立つ。
LLMVulExp は LLM の脆弱性検出(例: SeVC データセットの 90 % F1 スコア以上を達成)を効果的に実現し,詳細な説明を提供する。
また、Chain-of-Thought(CoT)のような先進的な戦略を用いて、脆弱性を発生させるコードに集中させ、有望な結果を達成するためにLLMをガイドする可能性についても検討する。
関連論文リスト
- Attention Tracker: Detecting Prompt Injection Attacks in LLMs [62.247841717696765]
大型言語モデル (LLM) は様々なドメインに革命をもたらしたが、インジェクション攻撃に弱いままである。
そこで本研究では,特定の注意点が本来の指示から注入指示へと焦点を移す,注意散逸効果の概念を紹介した。
本研究では,アテンション・トラッカーを提案する。アテンション・トラッカーは,インジェクション・アタックを検出するために,インストラクション上の注意パターンを追跡する訓練不要な検出手法である。
論文 参考訳(メタデータ) (2024-11-01T04:05:59Z) - RealVul: Can We Detect Vulnerabilities in Web Applications with LLM? [4.467475584754677]
本稿では,PHP 脆弱性検出用に設計された最初の LLM ベースのフレームワークである RealVul を紹介する。
コードの合理化と不要なセマンティック情報を排除しながら、潜在的な脆弱性トリガを分離できます。
また、データ合成法の改善により、PHPの脆弱性サンプルが不足している問題にも対処する。
論文 参考訳(メタデータ) (2024-10-10T03:16:34Z) - Can LLMs be Fooled? Investigating Vulnerabilities in LLMs [4.927763944523323]
LLM(Large Language Models)の出現は、自然言語処理(NLP)内の様々な領域で大きな人気を集め、膨大なパワーを誇っている。
本稿では,各脆弱性部の知見を合成し,新たな研究・開発の方向性を提案する。
現在の脆弱性の焦点を理解することで、将来のリスクを予測し軽減できます。
論文 参考訳(メタデータ) (2024-07-30T04:08:00Z) - Detecting and Understanding Vulnerabilities in Language Models via Mechanistic Interpretability [44.99833362998488]
大規模言語モデル(LLM)は、幅広いタスクで素晴らしいパフォーマンスを示している。
特にLSMは敵攻撃に弱いことが知られており、入力に対する非受容的な変更はモデルの出力を誤解させる可能性がある。
本稿では,メカニスティック・インタプリタビリティ(MI)技術に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T09:55:34Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
大規模言語モデル(LLM)はますます強力になってきていますが、それでも顕著ですが微妙な弱点があります。
従来のベンチマークアプローチでは、特定のモデルの欠陥を徹底的に特定することはできない。
さまざまなタスクにまたがるLLMの弱点を自動的に露呈する統合フレームワークであるAutoDetectを導入する。
論文 参考訳(メタデータ) (2024-06-24T15:16:45Z) - VulDetectBench: Evaluating the Deep Capability of Vulnerability Detection with Large Language Models [12.465060623389151]
本研究では,Large Language Models(LLM)の脆弱性検出機能を評価するために,新しいベンチマークであるVulDetectBenchを紹介する。
このベンチマークは、LLMの脆弱性を特定し、分類し、発見する能力を、難易度を高める5つのタスクを通じて総合的に評価している。
本ベンチマークでは,脆弱性検出の特定のタスクにおいて,様々なLLMの能力評価を効果的に行うとともに,コードセキュリティの重要領域における今後の研究と改善の基盤となる。
論文 参考訳(メタデータ) (2024-06-11T13:42:57Z) - Harnessing Large Language Models for Software Vulnerability Detection: A Comprehensive Benchmarking Study [1.03590082373586]
ソースコードの脆弱性発見を支援するために,大規模言語モデル(LLM)を提案する。
目的は、複数の最先端のLCMをテストし、最も優れたプロンプト戦略を特定することである。
LLMは従来の静的解析ツールよりも多くの問題を特定でき、リコールやF1スコアの点で従来のツールよりも優れています。
論文 参考訳(メタデータ) (2024-05-24T14:59:19Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - How Far Have We Gone in Vulnerability Detection Using Large Language
Models [15.09461331135668]
包括的な脆弱性ベンチマークであるVulBenchを紹介します。
このベンチマークは、幅広いCTF課題と実世界のアプリケーションから高品質なデータを集約する。
いくつかのLSMは、脆弱性検出における従来のディープラーニングアプローチよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-21T08:20:39Z) - Evaluating the Instruction-Following Robustness of Large Language Models
to Prompt Injection [70.28425745910711]
LLM(Large Language Models)は、命令追従に非常に熟練した言語である。
この能力は、迅速なインジェクション攻撃のリスクをもたらす。
このような攻撃に対する命令追従LDMの堅牢性を評価する。
論文 参考訳(メタデータ) (2023-08-17T06:21:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。