Enhancing Agricultural Machinery Management through Advanced LLM Integration
- URL: http://arxiv.org/abs/2407.20588v1
- Date: Tue, 30 Jul 2024 06:49:55 GMT
- Title: Enhancing Agricultural Machinery Management through Advanced LLM Integration
- Authors: Emily Johnson, Noah Wilson,
- Abstract summary: The integration of artificial intelligence into agricultural practices has the potential to revolutionize efficiency and sustainability in farming.
This paper introduces a novel approach that leverages large language models (LLMs), particularly GPT-4, to enhance decision-making processes in agricultural machinery management.
- Score: 0.7366405857677226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of artificial intelligence into agricultural practices, specifically through Consultation on Intelligent Agricultural Machinery Management (CIAMM), has the potential to revolutionize efficiency and sustainability in farming. This paper introduces a novel approach that leverages large language models (LLMs), particularly GPT-4, combined with multi-round prompt engineering to enhance decision-making processes in agricultural machinery management. We systematically developed and refined prompts to guide the LLMs in generating precise and contextually relevant outputs. Our approach was evaluated using a manually curated dataset from various online sources, and performance was assessed with accuracy and GPT-4 Scores. Comparative experiments were conducted using LLama-2-70B, ChatGPT, and GPT-4 models, alongside baseline and state-of-the-art methods such as Chain of Thought (CoT) and Thought of Thought (ThoT). The results demonstrate that our method significantly outperforms these approaches, achieving higher accuracy and relevance in generated responses. This paper highlights the potential of advanced prompt engineering techniques in improving the robustness and applicability of AI in agricultural contexts.
Related papers
- Automatic Evaluation for Text-to-image Generation: Task-decomposed Framework, Distilled Training, and Meta-evaluation Benchmark [62.58869921806019]
We propose a task decomposition evaluation framework based on GPT-4o to automatically construct a new training dataset.
We design innovative training strategies to effectively distill GPT-4o's evaluation capabilities into a 7B open-source MLLM, MiniCPM-V-2.6.
Experimental results demonstrate that our distilled open-source MLLM significantly outperforms the current state-of-the-art GPT-4o-base baseline.
arXiv Detail & Related papers (2024-11-23T08:06:06Z) - A Large-Scale Study of Relevance Assessments with Large Language Models: An Initial Look [52.114284476700874]
This paper reports on the results of a large-scale evaluation (the TREC 2024 RAG Track) where four different relevance assessment approaches were deployed.
We find that automatically generated UMBRELA judgments can replace fully manual judgments to accurately capture run-level effectiveness.
Surprisingly, we find that LLM assistance does not appear to increase correlation with fully manual assessments, suggesting that costs associated with human-in-the-loop processes do not bring obvious tangible benefits.
arXiv Detail & Related papers (2024-11-13T01:12:35Z) - LLMs for Enhanced Agricultural Meteorological Recommendations [0.0]
Agricultural meteorological recommendations are crucial for enhancing crop productivity and sustainability by providing farmers with actionable insights based on weather forecasts, soil conditions, and crop-specific data.
This paper presents a novel approach that leverages large language models (LLMs) and prompt engineering to improve the accuracy and relevance of these recommendations.
arXiv Detail & Related papers (2024-07-30T18:10:49Z) - Application of Machine Learning in Agriculture: Recent Trends and Future Research Avenues [6.0460261046732455]
Food production is a vital global concern and the potential for an agritech revolution through artificial intelligence (AI) remains largely unexplored.
This paper presents a comprehensive review focused on the application of machine learning (ML) in agriculture, aiming to explore its transformative potential in farming practices and efficiency enhancement.
arXiv Detail & Related papers (2024-05-23T17:53:31Z) - GPT-4 as Evaluator: Evaluating Large Language Models on Pest Management in Agriculture [7.458004824488893]
The application of large language models (LLMs) in agriculture, particularly in pest management, remains nascent.
We aimed to prove the feasibility by evaluating the content of the pest management advice generated by LLMs, including the Generative Pre-trained Transformer (GPT) series from OpenAI and the FLAN series from Google.
We proposed an innovative approach, using GPT-4 as an evaluator, to score the generated content on Coherence, Logical Consistency, Fluency, Relevance, Comprehensibility, and Exhaustiveness.
arXiv Detail & Related papers (2024-03-18T15:08:01Z) - Machine Learning Meets Advanced Robotic Manipulation [48.6221343014126]
The paper reviews cutting edge technologies and recent trends on machine learning methods applied to real-world manipulation tasks.
The rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue.
arXiv Detail & Related papers (2023-09-22T01:06:32Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Recent applications of machine learning, remote sensing, and iot
approaches in yield prediction: a critical review [0.0]
The integration of remote sensing and machine learning in agriculture is transforming the industry.
This paper reviews relevant articles that have used RS, ML, cloud computing, and IoT in crop yield prediction.
arXiv Detail & Related papers (2023-06-07T16:13:16Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
We show the possibility of substituting manually created ML pipelines with automated machine learning (AutoML) solutions.
Based on the CRISP-DM process, we split the manual ML pipeline into a machine learning and non-machine learning part.
We show in a case study for the industrial use case of price forecasting, that domain knowledge combined with AutoML can weaken the dependence on ML experts.
arXiv Detail & Related papers (2023-04-28T10:27:38Z) - Affordable Artificial Intelligence -- Augmenting Farmer Knowledge with
AI [1.9992810351494297]
This article presents the AI technology for predicting micro-climate conditions on the farm.
This publication is the fifth in the E-agriculture in Action series, launched in 2016 and jointly produced by FAO and ITU.
It aims to raise awareness about existing AI applications in agriculture and to inspire stakeholders to develop and replicate the new ones.
arXiv Detail & Related papers (2023-03-04T02:29:52Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.