Affordable Artificial Intelligence -- Augmenting Farmer Knowledge with
AI
- URL: http://arxiv.org/abs/2303.06049v1
- Date: Sat, 4 Mar 2023 02:29:52 GMT
- Title: Affordable Artificial Intelligence -- Augmenting Farmer Knowledge with
AI
- Authors: Peeyush Kumar, Andrew Nelson, Zerina Kapetanovic, and Ranveer Chandra
- Abstract summary: This article presents the AI technology for predicting micro-climate conditions on the farm.
This publication is the fifth in the E-agriculture in Action series, launched in 2016 and jointly produced by FAO and ITU.
It aims to raise awareness about existing AI applications in agriculture and to inspire stakeholders to develop and replicate the new ones.
- Score: 1.9992810351494297
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Farms produce hundreds of thousands of data points on the ground daily.
Farming technique which combines farming practices with the insights uncovered
in these data points using AI technology is called precision farming. Precision
farming technology augments and extends farmers' deep knowledge about their
land, making production more sustainable and profitable. As part of the larger
effort at Microsoft for empowering agricultural labor force to be more
productive and sustainable, this paper presents the AI technology for
predicting micro-climate conditions on the farm.
This article is a chapter in publication by Food and Agriculture Organization
of the United Nations and International Telecommunication Union Bangkok, 2021.
This publication on artificial intelligence (AI) for agriculture is the fifth
in the E-agriculture in Action series, launched in 2016 and jointly produced by
FAO and ITU. It aims to raise awareness about existing AI applications in
agriculture and to inspire stakeholders to develop and replicate the new ones.
Improvement of capacity and tools for capturing and processing data and
substantial advances in the field of machine learning open new horizons for
data-driven solutions that can support decision-making, facilitate supervision
and monitoring, improve the timeliness and effectiveness of safety measures
(e.g. use of pesticides), and support automation of many resource-consuming
tasks in agriculture. This publication presents the reader with a collection of
informative applications highlighting various ways AI is used in agriculture
and offering valuable insights on the implementation process, success factors,
and lessons learnt.
Related papers
- Application of Machine Learning in Agriculture: Recent Trends and Future Research Avenues [6.0460261046732455]
Food production is a vital global concern and the potential for an agritech revolution through artificial intelligence (AI) remains largely unexplored.
This paper presents a comprehensive review focused on the application of machine learning (ML) in agriculture, aiming to explore its transformative potential in farming practices and efficiency enhancement.
arXiv Detail & Related papers (2024-05-23T17:53:31Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Machine Learning Meets Advanced Robotic Manipulation [48.6221343014126]
The paper reviews cutting edge technologies and recent trends on machine learning methods applied to real-world manipulation tasks.
The rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue.
arXiv Detail & Related papers (2023-09-22T01:06:32Z) - Elephants and Algorithms: A Review of the Current and Future Role of AI
in Elephant Monitoring [47.24825031148412]
Artificial intelligence (AI) and machine learning (ML) present revolutionary opportunities to enhance our understanding of animal behavior and conservation strategies.
Using elephants, a crucial species in Africa's protected areas, as our focal point, we delve into the role of AI and ML in their conservation.
New AI and ML techniques offer solutions to streamline this process, helping us extract vital information that might otherwise be overlooked.
arXiv Detail & Related papers (2023-06-23T22:35:51Z) - Recent applications of machine learning, remote sensing, and iot
approaches in yield prediction: a critical review [0.0]
The integration of remote sensing and machine learning in agriculture is transforming the industry.
This paper reviews relevant articles that have used RS, ML, cloud computing, and IoT in crop yield prediction.
arXiv Detail & Related papers (2023-06-07T16:13:16Z) - AgroTIC: Bridging the gap between farmers, agronomists, and merchants
through smartphones and machine learning [16.079127761987667]
AgroTIC is a smartphone-based application for agriculture that bridges the gap between farmers, agronomists, and merchants.
We present a case study of the AgroTIC app among citrus fruit farmers from the Santander department in Colombia.
arXiv Detail & Related papers (2023-05-21T10:07:51Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
We review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry.
We present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery.
We highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI.
arXiv Detail & Related papers (2023-05-03T05:16:54Z) - Towards technological adaptation of advanced farming through AI, IoT,
and Robotics: A Comprehensive overview [0.0]
Artificial Intelligence (AI), Internet of Things (IoT), and Robotics-based devices and methods have produced new paradigms and opportunities in agriculture.
The major existing applications of agricultural robotics are for the function of soil preparation, planting, monitoring, harvesting, and storage.
arXiv Detail & Related papers (2022-02-21T07:47:43Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
Special issue presents the latest development in statistical inference, machine learning and optimum control for precision farming.
Satellite positioning and navigation followed by Internet-of-Things generate vast information that can be used to optimize farming processes in real-time.
arXiv Detail & Related papers (2020-07-07T12:44:17Z) - Artificial Intelligence for Digital Agriculture at Scale: Techniques,
Policies, and Challenges [1.1245087602142634]
Digital agriculture has the promise to transform agricultural throughput.
It can do this by applying data science and engineering for mapping input factors to crop throughput, while bounding the available resources.
This paper is the first one to bring together the important questions that will guide the end-to-end pipeline for the evolution of a new generation of digital agricultural solutions.
arXiv Detail & Related papers (2020-01-21T06:02:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.