論文の概要: Decoding Linguistic Representations of Human Brain
- arxiv url: http://arxiv.org/abs/2407.20622v1
- Date: Tue, 30 Jul 2024 07:55:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 17:59:37.449277
- Title: Decoding Linguistic Representations of Human Brain
- Title(参考訳): 人間の脳の言語表現の復号化
- Authors: Yu Wang, Heyang Liu, Yuhao Wang, Chuan Xuan, Yixuan Hou, Sheng Feng, Hongcheng Liu, Yusheng Liao, Yanfeng Wang,
- Abstract要約: テキスト形式と音声形式の両方を脳から言語へ復号する分類法を提案する。
この研究は、言語理解に焦点を当てた神経科学と深層学習に基づく脳復号という2つのタイプの研究を統合している。
- 参考スコア(独自算出の注目度): 21.090956290947275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language, as an information medium created by advanced organisms, has always been a concern of neuroscience regarding how it is represented in the brain. Decoding linguistic representations in the evoked brain has shown groundbreaking achievements, thanks to the rapid improvement of neuroimaging, medical technology, life sciences and artificial intelligence. In this work, we present a taxonomy of brain-to-language decoding of both textual and speech formats. This work integrates two types of research: neuroscience focusing on language understanding and deep learning-based brain decoding. Generating discernible language information from brain activity could not only help those with limited articulation, especially amyotrophic lateral sclerosis (ALS) patients but also open up a new way for the next generation's brain-computer interface (BCI). This article will help brain scientists and deep-learning researchers to gain a bird's eye view of fine-grained language perception, and thus facilitate their further investigation and research of neural process and language decoding.
- Abstract(参考訳): 先進的な生物によって作成された情報媒体としての言語は、脳内でどのように表現されるかという神経科学に常に関心を抱いていた。
誘発脳における言語表現の復号化は、神経画像、医療技術、生命科学、人工知能の急速な進歩により、画期的な成果を示している。
本研究では,テキスト形式と音声形式の両方を脳から言語へ復号する分類法を提案する。
この研究は、言語理解に焦点を当てた神経科学と深層学習に基づく脳復号という2つのタイプの研究を統合している。
脳活動から識別可能な言語情報を生成することは、限られた関節症、特に筋萎縮性側索硬化症(ALS)患者を助けるだけでなく、次世代の脳-コンピュータインターフェース(BCI)の新しい方法を開くのにも役立った。
この記事では、脳科学者とディープラーニング研究者が、きめ細かい言語知覚の鳥の目視を得るのを助け、それによって神経プロセスと言語復号のさらなる研究と研究を促進する。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - MindSemantix: Deciphering Brain Visual Experiences with a Brain-Language Model [45.18716166499859]
fMRIで捉えた脳の活動を通して人間の視覚体験を解読することは、魅力的で最先端の課題である。
我々は、LLMが視覚的に誘発される脳活動のセマンティックな内容を理解することができる新しいマルチモーダルフレームワークであるMindSemantixを紹介した。
MindSemantixは、脳の活動から派生した視覚情報と意味情報に深く根ざした高品質なキャプションを生成する。
論文 参考訳(メタデータ) (2024-05-29T06:55:03Z) - Tuning In to Neural Encoding: Linking Human Brain and Artificial
Supervised Representations of Language [31.636016502455693]
我々は,プロンプトチューニングを用いた8つの自然言語理解(NLU)タスクの教師付き表現を生成する。
従来の微調整よりも、中国の刺激に対する神経反応をより正確に予測する表現が、プロンプトチューニングによって得られることを示す。
論文 参考訳(メタデータ) (2023-10-05T06:31:01Z) - Deep Neural Networks and Brain Alignment: Brain Encoding and Decoding (Survey) [9.14580723964253]
AIモデルを使って脳についての洞察を得ることができるか?
脳記録に関する深層学習モデルの情報はどのようになっているか?
復号化モデルは、fMRIが与えられた刺激を再構成する逆問題を解決する。
近年,自然言語処理,コンピュータビジョン,音声に対するディープラーニングモデルの有効性に触発されて,ニューラルコーディングや復号化モデルが提案されている。
論文 参考訳(メタデータ) (2023-07-17T06:54:36Z) - BrainBERT: Self-supervised representation learning for intracranial
recordings [18.52962864519609]
我々は、神経科学に現代的な表現学習アプローチをもたらす頭蓋内記録のための再利用可能な変換器BrainBERTを開発した。
NLPや音声認識と同様に、この変換器は複雑な概念を高い精度で、はるかに少ないデータで分類することができる。
将来的には、表現学習を使用することで、はるかに多くの概念がニューラル録音から切り離され、言語モデルがアンロックされた言語のように脳をアンロックする可能性がある。
論文 参考訳(メタデータ) (2023-02-28T07:40:37Z) - Language Cognition and Language Computation -- Human and Machine
Language Understanding [51.56546543716759]
言語理解は認知科学とコンピュータ科学の分野で重要な科学的問題である。
これらの規律を組み合わせることで、インテリジェントな言語モデルを構築する上で、新たな洞察が得られますか?
論文 参考訳(メタデータ) (2023-01-12T02:37:00Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
音声ブックを聴く被験者の機能的磁気共鳴イメージングの時間軸予測に及ぼすテスト損失,トレーニングコーパス,モデルアーキテクチャの影響について検討した。
各モデルの訓練されていないバージョンは、同じ単語をまたいだ脳反応の類似性を捉えることで、脳内のかなりの量のシグナルをすでに説明していることがわかりました。
ニューラル言語モデルを用いたヒューマン・ランゲージ・システムの説明を目的とした今後の研究の実践を提案する。
論文 参考訳(メタデータ) (2022-07-07T15:37:17Z) - Toward a realistic model of speech processing in the brain with
self-supervised learning [67.7130239674153]
生波形で訓練された自己教師型アルゴリズムは有望な候補である。
We show that Wav2Vec 2.0 learns brain-like representations with little as 600 hours of unlabelled speech。
論文 参考訳(メタデータ) (2022-06-03T17:01:46Z) - Model-based analysis of brain activity reveals the hierarchy of language
in 305 subjects [82.81964713263483]
言語の神経基盤を分解する一般的なアプローチは、個人間で異なる刺激に対する脳の反応を関連付けている。
そこで本研究では,自然刺激に曝露された被験者に対して,モデルに基づくアプローチが等価な結果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-12T15:30:21Z) - Data-driven models and computational tools for neurolinguistics: a
language technology perspective [12.082438928980087]
本稿では,脳画像に基づく神経言語学的研究について,自然言語表現に焦点をあてて概説する。
神経言語学と言語技術の相互豊か化は、脳に認識された自然言語表現の開発につながる。
論文 参考訳(メタデータ) (2020-03-23T20:41:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。