Quantum and thermal pressures from light scalar fields
- URL: http://arxiv.org/abs/2407.20658v1
- Date: Tue, 30 Jul 2024 08:52:19 GMT
- Title: Quantum and thermal pressures from light scalar fields
- Authors: Hauke Fischer, Christian Käding, Mario Pitschmann,
- Abstract summary: We derive expressions for the quantum and thermal pressures induced by exchanges of light scalar field fluctuations between two thin parallel plates.
For chameleon, symmetron and environment-dependent dilaton models, we find large regions in their parameter spaces that allow for thermal pressures to equal or exceed the quantum pressures.
- Score: 0.6144680854063939
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Light scalar fields play a variety of roles in modern physics, especially in cosmology and modified theories of gravity. For this reason, there is a zoo of experiments actively trying to find evidence for many scalar field models that have been proposed in theoretical considerations. Among those are setups in which the pressures expected to be induced by light scalar fields between two parallel plates are studied, for example, Casimir force experiments. While it is known that classical and quantum pressures caused by light scalar fields could have significant impacts on such experiments, in this article, we show that this can also be the case for thermal pressure. More specifically, we derive expressions for the quantum and thermal pressures induced by exchanges of light scalar field fluctuations between two thin parallel plates. As particular examples, we then look at screened scalar fields. For chameleon, symmetron and environment-dependent dilaton models, we find large regions in their parameter spaces that allow for thermal pressures to equal or exceed the quantum pressures. By comparing with earlier constraints from quantum pressure calculations, we conclude that thermal pressures induced by chameleons are actually of experimental significance.
Related papers
- Casimir Physics beyond the Proximity Force Approximation: The Derivative
Expansion [49.1574468325115]
We review the derivative expansion (DE) method in Casimir physics, an approach which extends the proximity force approximation (PFA)
We focus on different particular geometries, boundary conditions, types of fields, and quantum and thermal fluctuations.
arXiv Detail & Related papers (2024-02-27T19:56:52Z) - Dilaton-induced open quantum dynamics [0.0]
We study the open quantum dynamics of a probe modelled by another real scalar field.
As the leading effect, we extract a correction to the probe's unitary evolution.
We show that comparing the predicted frequency shifts in two experimentally distinct setups has the potential to exclude large parts of the dilaton parameter space.
arXiv Detail & Related papers (2023-06-19T12:49:59Z) - Light-shift induced behaviors observed in momentum-space quantum walks [47.187609203210705]
We present a theoretical model which proves that the coherent dynamics of the spinor condensate is sufficient to explain the experimental data.
Our numerical findings are supported by an analytical prediction for the momentum distributions in the limit of zero-temperature condensates.
arXiv Detail & Related papers (2022-05-16T14:50:05Z) - The Casimir effect in graphene systems: Experiment and theory [0.0]
Two experiments on measuring the gradient of the Casimir force between an Au-coated sphere and graphene- coated substrates are described.
computational results for the Casimir pressure and for the thermal correction are presented.
Possible implications of this result to resolution of long-term problems of Casimir physics are discussed.
arXiv Detail & Related papers (2022-04-28T07:24:39Z) - Quantum simulation of non-equilibrium dynamics and thermalization in the
Schwinger model [0.0]
We present simulations of non-equilibrium dynamics of quantum field theories on digital quantum computers.
We consider the Schwinger model, a 1+1 dimensional U(1) gauge theory, coupled through a Yukawa-type interaction to a thermal environment.
arXiv Detail & Related papers (2021-06-15T19:48:05Z) - Casimir Puzzle and Casimir Conundrum: Discovery and Search for
Resolution [0.0]
The Casimir entropy calculated in the framework of the Lifshitz theory violates the Nernst heat theorem.
The review presents a summary of the main facts on this subject on both theoretical and experimental sides.
arXiv Detail & Related papers (2021-04-03T18:40:46Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Temperature dependent Casimir forces: recurring subtleties [0.0]
The Casimir force between two ideal surfaces is a special (zero temperature) limit of a more general theory due to Lifshitz.
Recent experiments have appeared to confirm this prediction, but the data were compared with the predictions of Casimir's original expression.
Another error is to ignore the fact that real conducting surfaces can be far from ideal, and that a correction factor of up to 25% may be required.
arXiv Detail & Related papers (2020-07-02T10:46:11Z) - Thermoelectricity in Quantum-Hall Corbino Structures [48.7576911714538]
We measure the thermoelectric response of Corbino structures in the quantum Hall effect regime.
We predict a figure of merit for the efficiency of thermoelectric cooling which becomes very large for partially filled Landau levels.
arXiv Detail & Related papers (2020-03-03T19:19:28Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.