What makes for good morphology representations for spatial omics?
- URL: http://arxiv.org/abs/2407.20660v2
- Date: Thu, 1 Aug 2024 09:56:15 GMT
- Title: What makes for good morphology representations for spatial omics?
- Authors: Eduard Chelebian, Christophe Avenel, Carolina Wählby,
- Abstract summary: We introduce a framework for categorizing spatial omics-morphology combination methods.
By translation we mean finding morphological features that spatially correlate with gene expression patterns.
By integration we mean finding morphological features that spatially complement gene expression patterns.
- Score: 1.4298574812790055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatial omics has transformed our understanding of tissue architecture by preserving spatial context of gene expression patterns. Simultaneously, advances in imaging AI have enabled extraction of morphological features describing the tissue. The intersection of spatial omics and imaging AI presents opportunities for a more holistic understanding. In this review we introduce a framework for categorizing spatial omics-morphology combination methods, focusing on how morphological features can be translated or integrated into spatial omics analyses. By translation we mean finding morphological features that spatially correlate with gene expression patterns with the purpose of predicting gene expression. Such features can be used to generate super-resolution gene expression maps or infer genetic information from clinical H&E-stained samples. By integration we mean finding morphological features that spatially complement gene expression patterns with the purpose of enriching information. Such features can be used to define spatial domains, especially where gene expression has preceded morphological changes and where morphology remains after gene expression. We discuss learning strategies and directions for further development of the field.
Related papers
- Multi-modal Spatial Clustering for Spatial Transcriptomics Utilizing High-resolution Histology Images [1.3124513975412255]
spatial transcriptomics (ST) enables transcriptome-wide gene expression profiling while preserving spatial context.
Current spatial clustering methods fail to fully integrate high-resolution histology image features with gene expression data.
We propose a novel contrastive learning-based deep learning approach that integrates gene expression data with histology image features.
arXiv Detail & Related papers (2024-10-31T00:32:24Z) - Distance-Preserving Generative Modeling of Spatial Transcriptomics [0.0]
We introduce a class of distance-preserving generative models for spatial transcriptomics.
We use the provided spatial information to regularize the learned representation space of gene expressions to have a similar pair-wise distance structure.
Our framework grants compatibility with any variational-inference-based generative models for gene expression modeling.
arXiv Detail & Related papers (2024-08-01T21:04:27Z) - Multimodal contrastive learning for spatial gene expression prediction using histology images [13.47034080678041]
We propose textbfmclSTExp, a multimodal contrastive learning with Transformer and Densenet-121 encoder for Spatial Transcriptomics Expression prediction.
textbfmclSTExp has superior performance in predicting spatial gene expression.
It has shown promise in interpreting cancer-specific overexpressed genes, elucidating immune-related genes, and identifying specialized spatial domains annotated by pathologists.
arXiv Detail & Related papers (2024-07-11T06:33:38Z) - Spatially Resolved Gene Expression Prediction from Histology via Multi-view Graph Contrastive Learning with HSIC-bottleneck Regularization [18.554968935341236]
We propose a Multi-view Graph Contrastive Learning framework with HSIC-bottleneck Regularization(ST-GCHB) to help impute the gene expression of the queried imagingspots by considering their spatial dependency.
arXiv Detail & Related papers (2024-06-18T03:07:25Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNA is a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning.
By leveraging vector-quantized codebooks as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings.
arXiv Detail & Related papers (2024-05-13T20:15:03Z) - Efficient and Scalable Fine-Tune of Language Models for Genome
Understanding [49.606093223945734]
We present textscLingo: textscLanguage prefix ftextscIne-tuning for textscGentextscOmes.
Unlike DNA foundation models, textscLingo strategically leverages natural language foundation models' contextual cues.
textscLingo further accommodates numerous downstream fine-tune tasks by an adaptive rank sampling method.
arXiv Detail & Related papers (2024-02-12T21:40:45Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - Graph Adaptive Semantic Transfer for Cross-domain Sentiment
Classification [68.06496970320595]
Cross-domain sentiment classification (CDSC) aims to use the transferable semantics learned from the source domain to predict the sentiment of reviews in the unlabeled target domain.
We present Graph Adaptive Semantic Transfer (GAST) model, an adaptive syntactic graph embedding method that is able to learn domain-invariant semantics from both word sequences and syntactic graphs.
arXiv Detail & Related papers (2022-05-18T07:47:01Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - Topographic VAEs learn Equivariant Capsules [84.33745072274942]
We introduce the Topographic VAE: a novel method for efficiently training deep generative models with topographically organized latent variables.
We show that such a model indeed learns to organize its activations according to salient characteristics such as digit class, width, and style on MNIST.
We demonstrate approximate equivariance to complex transformations, expanding upon the capabilities of existing group equivariant neural networks.
arXiv Detail & Related papers (2021-09-03T09:25:57Z) - All You Need is Color: Image based Spatial Gene Expression Prediction
using Neural Stain Learning [11.9045433112067]
We propose a "stain-aware" machine learning approach for prediction of spatial transcriptomic gene expression profiles.
We have found that the gene expression predictions from the proposed approach show higher correlations with true expression values obtained through sequencing.
arXiv Detail & Related papers (2021-08-23T23:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.