論文の概要: PIP: Prototypes-Injected Prompt for Federated Class Incremental Learning
- arxiv url: http://arxiv.org/abs/2407.20705v1
- Date: Tue, 30 Jul 2024 10:00:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 17:39:47.853858
- Title: PIP: Prototypes-Injected Prompt for Federated Class Incremental Learning
- Title(参考訳): PIP:フェデレーションクラスインクリメンタルラーニングのためのプロトタイプ注入プロンプト
- Authors: Muhammad Anwar Ma'sum, Mahardhika Pratama, Savitha Ramasamy, Lin Liu, Habibullah Habibullah, Ryszard Kowalczyk,
- Abstract要約: Federated Class Incremental Learning (FCIL) は継続学習の新しい方向性である
プロトタイプインジェクトインジェクションプロンプト(PIP)と呼ばれるFCILの新しいリハーサルフリー手法を提案する。
実験結果から,提案手法はCIFAR100, MiniImageNet, TinyImageNetデータセットにおいて, 最大33%の精度向上を実現した。
- 参考スコア(独自算出の注目度): 17.74913214583399
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Class Incremental Learning (FCIL) is a new direction in continual learning (CL) for addressing catastrophic forgetting and non-IID data distribution simultaneously. Existing FCIL methods call for high communication costs and exemplars from previous classes. We propose a novel rehearsal-free method for FCIL named prototypes-injected prompt (PIP) that involves 3 main ideas: a) prototype injection on prompt learning, b) prototype augmentation, and c) weighted Gaussian aggregation on the server side. Our experiment result shows that the proposed method outperforms the current state of the arts (SOTAs) with a significant improvement (up to 33%) in CIFAR100, MiniImageNet and TinyImageNet datasets. Our extensive analysis demonstrates the robustness of PIP in different task sizes, and the advantage of requiring smaller participating local clients, and smaller global rounds. For further study, source codes of PIP, baseline, and experimental logs are shared publicly in https://github.com/anwarmaxsum/PIP.
- Abstract(参考訳): フェデレート・クラス・インクリメンタル・ラーニング(FCIL)は破滅的な忘れ込みと非IIDデータ配信を同時に扱うための継続学習(CL)の新しい方向性である。
既存のFCIL手法では、従来のクラスから高い通信コストと模範を要求される。
FCILのプロトタイプインジェクトプロンプト(PIP)と呼ばれる新しいリハーサルフリー手法を提案する。
a) 素早い学習に対する原型注入
ロ 原型増補及び増補
c) サーバ側のガウスアグリゲーションの重み付け。
実験の結果,提案手法はCIFAR100, MiniImageNet, TinyImageNetデータセットにおいて, 最先端技術(SOTA)を最大33%向上させることができた。
我々の広範な分析は、異なるタスクサイズでのPIPの堅牢性を示し、より小さなローカルクライアントとより小さなグローバルラウンドを必要とする利点を示している。
さらなる研究のために、PIP、ベースライン、実験ログのソースコードはhttps://github.com/anwarmaxsum/PIPで公開されている。
関連論文リスト
- An Enhanced Federated Prototype Learning Method under Domain Shift [36.73020712815063]
Federated Learning (FL)は、プライベートデータを共有することなく、協調的な機械学習トレーニングを可能にする。
最近の論文では、分散対応のデュアルレベルプロトタイプクラスタリングを導入し、新しい$alpha$-sparsityプロトタイプロスを用いる。
Digit-5、Office-10、DomainNetデータセットの評価は、我々の手法が既存のアプローチよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-09-27T09:28:27Z) - Continual Learning for Remote Physiological Measurement: Minimize Forgetting and Simplify Inference [4.913049603343811]
既存のr測定手法は、しばしば漸進的な学習シナリオを見落としている。
既存のクラスインクリメンタルな学習アプローチはr測定には適していない。
r測定のための連続学習に取り組むためにADDPという新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-19T01:49:09Z) - Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
本稿では,FS-PCSによる3Dポイント・クラウドセマンティックセマンティックセグメンテーションについて再検討する。
我々は、最先端の2つの重要な問題、前景の漏洩とスパースポイントの分布に焦点をあてる。
これらの問題に対処するために、新しいベンチマークを構築するための標準化されたFS-PCS設定を導入する。
論文 参考訳(メタデータ) (2024-03-01T15:14:47Z) - Transductive Few-shot Learning with Prototype-based Label Propagation by
Iterative Graph Refinement [41.726774734996766]
そこで本研究では,数ショット学習のためのプロトタイプベースのラベル伝搬手法を提案する。
具体的には, このグラフ構造は, サンプル間の関係ではなく, プロトタイプとサンプルの関係に基づいている。
ミニイメージネット, タイレッドイメージネット, CIFAR-FS, CUBデータセットでは, 提案手法が他の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-04-23T10:09:26Z) - Boosting Low-Data Instance Segmentation by Unsupervised Pre-training
with Saliency Prompt [103.58323875748427]
この研究は、低データ体制のための新しい教師なし事前学習ソリューションを提供する。
近年のPrompting技術の成功に触発されて,QEISモデルを強化した新しい事前学習手法を導入する。
実験結果から,本手法は3つのデータセット上でのいくつかのQEISモデルを大幅に向上させることが示された。
論文 参考訳(メタデータ) (2023-02-02T15:49:03Z) - Prediction Calibration for Generalized Few-shot Semantic Segmentation [101.69940565204816]
汎用Few-shot Semantic (GFSS) は、各画像ピクセルを、豊富なトレーニング例を持つベースクラスか、クラスごとにわずかに(例: 1-5)のトレーニングイメージを持つ新しいクラスのいずれかに分割することを目的としている。
我々は、融合したマルチレベル機能を用いて、分類器の最終予測をガイドするクロスアテンションモジュールを構築する。
私たちのPCNは、最先端の代替品よりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2022-10-15T13:30:12Z) - Pushing the Limits of Simple Pipelines for Few-Shot Learning: External
Data and Fine-Tuning Make a Difference [74.80730361332711]
コンピュータビジョンにおいて、ほとんどショット学習は重要かつトピック的な問題である。
単純なトランスフォーマーベースのパイプラインは、標準ベンチマークで驚くほど優れたパフォーマンスが得られることを示す。
論文 参考訳(メタデータ) (2022-04-15T02:55:58Z) - Learning Class-level Prototypes for Few-shot Learning [24.65076873131432]
ほとんどラベル付きサンプルを使用して新しいカテゴリを認識することを目的としていない。
本稿では,少数のサポートデータから好適なプロトタイプを生成することを学べる,数ショット分類のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-25T06:33:52Z) - Fewer is More: A Deep Graph Metric Learning Perspective Using Fewer
Proxies [65.92826041406802]
本稿では,グラフ分類の観点から,プロキシベースのディープグラフメトリックラーニング手法を提案する。
複数のグローバルプロキシを利用して、各クラスの元のデータポイントを総括的に近似する。
本研究では, 近接関係を接地トラス・ラベルに従って調整する, 新たな逆ラベル伝搬アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-10-26T14:52:42Z) - LFD-ProtoNet: Prototypical Network Based on Local Fisher Discriminant
Analysis for Few-shot Learning [98.64231310584614]
Prototypeal Network (ProtoNet) は、各クラスのプロトタイプ表現までの距離を用いてメートル法学習と分類を行う、数発の学習フレームワークである。
提案手法の有用性は,理論上は予測されるリスクバウンドを提供し,MiniImageNetとタイレッドImageNetに優れた分類精度を実証的に示すことによって示される。
論文 参考訳(メタデータ) (2020-06-15T11:56:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。