Integer-Valued Training and Spike-Driven Inference Spiking Neural Network for High-performance and Energy-efficient Object Detection
- URL: http://arxiv.org/abs/2407.20708v3
- Date: Mon, 5 Aug 2024 05:53:55 GMT
- Title: Integer-Valued Training and Spike-Driven Inference Spiking Neural Network for High-performance and Energy-efficient Object Detection
- Authors: Xinhao Luo, Man Yao, Yuhong Chou, Bo Xu, Guoqi Li,
- Abstract summary: Spiking Neural Networks (SNNs) have bio-plaus and low-power advantages over Artificial Neural Networks (ANNs)
In this work, we focus on bridging the performance gap between ANNs and SNNs on object detection.
We design a SpikeYOLO architecture to solve this problem by simplifying the vanilla YOLO and incorporating meta SNN blocks.
- Score: 15.154553304520164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Brain-inspired Spiking Neural Networks (SNNs) have bio-plausibility and low-power advantages over Artificial Neural Networks (ANNs). Applications of SNNs are currently limited to simple classification tasks because of their poor performance. In this work, we focus on bridging the performance gap between ANNs and SNNs on object detection. Our design revolves around network architecture and spiking neuron. First, the overly complex module design causes spike degradation when the YOLO series is converted to the corresponding spiking version. We design a SpikeYOLO architecture to solve this problem by simplifying the vanilla YOLO and incorporating meta SNN blocks. Second, object detection is more sensitive to quantization errors in the conversion of membrane potentials into binary spikes by spiking neurons. To address this challenge, we design a new spiking neuron that activates Integer values during training while maintaining spike-driven by extending virtual timesteps during inference. The proposed method is validated on both static and neuromorphic object detection datasets. On the static COCO dataset, we obtain 66.2% mAP@50 and 48.9% mAP@50:95, which is +15.0% and +18.7% higher than the prior state-of-the-art SNN, respectively. On the neuromorphic Gen1 dataset, we achieve 67.2% mAP@50, which is +2.5% greater than the ANN with equivalent architecture, and the energy efficiency is improved by 5.7*. Code: https://github.com/BICLab/SpikeYOLO
Related papers
- Scaling Spike-driven Transformer with Efficient Spike Firing Approximation Training [17.193023656793464]
The ambition of brain-inspired Spiking Neural Networks (SNNs) is to become a low-power alternative to traditional Artificial Neural Networks (ANNs)
This work addresses two major challenges in realizing this vision: the performance gap between SNNs and ANNs, and the high training costs of SNNs.
We identify intrinsic flaws in spiking neurons caused by binary firing mechanisms and propose a Spike Firing Approximation (SFA) method using integer training and spike-driven inference.
arXiv Detail & Related papers (2024-11-25T03:05:41Z) - NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
We propose a novel neural architecture search scheme for binary neural networks, named NAS-BNN.
Our discovered binary model family outperforms previous BNNs for a wide range of operations (OPs) from 20M to 200M.
In addition, we validate the transferability of these searched BNNs on the object detection task, and our binary detectors with the searched BNNs achieve a novel state-of-the-art result, e.g., 31.6% mAP with 370M OPs, on MS dataset.
arXiv Detail & Related papers (2024-08-28T02:17:58Z) - Advancing Spiking Neural Networks towards Multiscale Spatiotemporal Interaction Learning [10.702093960098106]
Spiking Neural Networks (SNNs) serve as an energy-efficient alternative to Artificial Neural Networks (ANNs)
We have designed a Spiking Multiscale Attention (SMA) module that captures multiscaletemporal interaction information.
Our approach has achieved state-of-the-art results on mainstream neural datasets.
arXiv Detail & Related papers (2024-05-22T14:16:05Z) - Enabling energy-Efficient object detection with surrogate gradient
descent in spiking neural networks [0.40054215937601956]
Spiking Neural Networks (SNNs) are a biologically plausible neural network model with significant advantages in both event-driven processing and processing-temporal information.
In this study, we introduce the Current Mean Decoding (CMD) method, which solves the regression problem to facilitate the training of deep SNNs for object detection tasks.
Based on the gradient surrogate and CMD, we propose the SNN-YOLOv3 model for object detection.
arXiv Detail & Related papers (2023-09-07T15:48:00Z) - Deep Directly-Trained Spiking Neural Networks for Object Detection [20.594942840081757]
EMS-YOLO is a novel directly-trained SNN framework for object detection.
We design a full-spike residual block, EMS-ResNet, which can effectively extend the depth of the directly-trained SNN with low power consumption.
It is shown that our model could achieve comparable performance to the ANN with the same architecture while consuming 5.83 times less energy.
arXiv Detail & Related papers (2023-07-21T08:10:26Z) - Spikformer: When Spiking Neural Network Meets Transformer [102.91330530210037]
We consider two biologically plausible structures, the Spiking Neural Network (SNN) and the self-attention mechanism.
We propose a novel Spiking Self Attention (SSA) as well as a powerful framework, named Spiking Transformer (Spikformer)
arXiv Detail & Related papers (2022-09-29T14:16:49Z) - Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking
Neural Networks with Learnable Neuronal Dynamics [6.309365332210523]
Spiking Neural Networks (SNNs) with their neuro-inspired event-driven processing can efficiently handle asynchronous data.
We propose an adaptive fully-spiking framework with learnable neuronal dynamics to alleviate the spike vanishing problem.
Our experiments on datasets show an average reduction of 13% in average endpoint error (AEE) compared to state-of-the-art ANNs.
arXiv Detail & Related papers (2022-09-21T21:17:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
Bio-inspired neural networks can potentially lead to greater computational efficiency on event-driven hardware.
We propose a novel Event-based Video reconstruction framework based on a fully Spiking Neural Network (EVSNN)
We find that the spiking neurons have the potential to store useful temporal information (memory) to complete such time-dependent tasks.
arXiv Detail & Related papers (2022-01-25T02:05:20Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.