論文の概要: Re-localization acceleration with Medoid Silhouette Clustering
- arxiv url: http://arxiv.org/abs/2407.20749v1
- Date: Tue, 30 Jul 2024 11:34:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 17:19:48.832068
- Title: Re-localization acceleration with Medoid Silhouette Clustering
- Title(参考訳): メドイドシルエットクラスタリングによる再局在加速
- Authors: Hongyi Zhang, Walterio Mayol-Cuevas,
- Abstract要約: 本稿では,視覚的再局在の促進に向けた新しいアプローチを提案する。
ビジュアルアルゴリズムによって抽出されたクラスタリングに基づいて構築された木のような探索戦略は、加速度に一致するように設計されている。
- 参考スコア(独自算出の注目度): 4.606926837975916
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Two crucial performance criteria for the deployment of visual localization are speed and accuracy. Current research on visual localization with neural networks is limited to examining methods for enhancing the accuracy of networks across various datasets. How to expedite the re-localization process within deep neural network architectures still needs further investigation. In this paper, we present a novel approach for accelerating visual re-localization in practice. A tree-like search strategy, built on the keyframes extracted by a visual clustering algorithm, is designed for matching acceleration. Our method has been validated on two tasks across three public datasets, allowing for 50 up to 90 percent time saving over the baseline while not reducing location accuracy.
- Abstract(参考訳): 視覚的ローカライゼーションの展開における2つの重要な性能基準は、スピードと精度である。
ニューラルネットワークを用いた視覚的ローカライゼーションの現在の研究は、さまざまなデータセットにわたるネットワークの精度を高める方法を調べることに限定されている。
ディープニューラルネットワークアーキテクチャにおける再ローカライズプロセスの迅速化には,さらなる調査が必要だ。
本稿では,視覚的再局在化を現実的に促進するための新しいアプローチを提案する。
ビジュアルクラスタリングアルゴリズムによって抽出されたキーフレーム上に構築された木のような探索戦略は、加速度のマッチングのために設計されている。
提案手法は,3つの公開データセットにまたがる2つのタスクに対して検証され,ベースライン上の最大90%の時間節約が可能であり,位置精度は低下しない。
関連論文リスト
- Deep Homography Estimation for Visual Place Recognition [49.235432979736395]
本稿では,変換器を用いたディープホモグラフィー推定(DHE)ネットワークを提案する。
バックボーンネットワークによって抽出された濃密な特徴写像を入力とし、高速で学習可能な幾何的検証のためにホモグラフィーに適合する。
ベンチマークデータセットを用いた実験により,本手法はいくつかの最先端手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-02-25T13:22:17Z) - Distributed Neural Representation for Reactive in situ Visualization [23.80657290203846]
Inlicit Neural representations (INR) は、大規模ボリュームデータを圧縮するための強力なツールとして登場した。
分散ニューラル表現を開発し,それをその場での可視化に最適化する。
我々の技術はプロセス間のデータ交換を排除し、最先端の圧縮速度、品質、比率を達成する。
論文 参考訳(メタデータ) (2023-03-28T03:55:47Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
骨格に基づく行動認識のための適応的局所成分認識グラフ畳み込みネットワークを提案する。
我々の手法はグローバルな埋め込みよりも強力な表現を提供し、我々のモデルが最先端に到達するのに役立ちます。
論文 参考訳(メタデータ) (2022-09-21T02:33:07Z) - Learning Consistency from High-quality Pseudo-labels for Weakly
Supervised Object Localization [7.602783618330373]
より一貫したローカライゼーションを学習するための2段階のアプローチを提案する。
まず,マスクを用いた擬似ラベル生成アルゴリズムを提案し,擬似教師付き学習手法を用いてオブジェクトの局所化ネットワークを初期化する。
第2段階では,分類識別に基づく疑似ラベルの信頼度を簡易かつ効果的に評価する手法を提案する。
論文 参考訳(メタデータ) (2022-03-18T09:05:51Z) - Application of 2-D Convolutional Neural Networks for Damage Detection in
Steel Frame Structures [0.0]
本稿では,2次元畳み込みニューラルネットワーク(2次元CNN)を特徴抽出と分類段階の両方に応用する。
本手法では、深度ではなく、光ったCNNのネットワークを使用し、生の加速度信号を入力とする。
論文 参考訳(メタデータ) (2021-10-29T16:29:31Z) - Learn Fine-grained Adaptive Loss for Multiple Anatomical Landmark
Detection in Medical Images [15.7026400415269]
本稿ではランドマーク検出のための新しい学習学習フレームワークを提案する。
提案手法は汎用的であり,解剖学的ランドマーク検出の効率向上の可能性を示す。
論文 参考訳(メタデータ) (2021-05-19T13:39:18Z) - STA-VPR: Spatio-temporal Alignment for Visual Place Recognition [17.212503755962757]
画像間の距離を計測しながら空間領域から局所的な特徴を整列する適応動的時間ウォーピングアルゴリズムを提案する。
時間的アライメントに基づく画像シーケンスマッチングを行うために、局所マッチングDTWアルゴリズムを適用した。
その結果,提案手法はcnnに基づく手法を大幅に改善した。
論文 参考訳(メタデータ) (2021-03-25T03:27:42Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
そこで我々は,局所的批判訓練と呼ばれる新しいモデル並列学習手法を提案する。
提案手法は,畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の両方において,階層群の更新プロセスの分離に成功したことを示す。
また,提案手法によりトレーニングされたネットワークを構造最適化に利用できることを示す。
論文 参考訳(メタデータ) (2021-02-03T09:30:45Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
検証問題に基づくアルゴリズムを反復的に導入し、2つの分割戦略を探索する。
また、ニューラルネットワークの検証問題を単純化するために、ニューロンアクティベーションフェーズを利用する、高度に並列化可能な前処理アルゴリズムも導入する。
論文 参考訳(メタデータ) (2020-04-17T20:21:47Z) - Learning to Hash with Graph Neural Networks for Recommender Systems [103.82479899868191]
グラフ表現学習は、大規模に高品質な候補探索をサポートすることに多くの注目を集めている。
ユーザ・イテム相互作用ネットワークにおけるオブジェクトの埋め込みベクトルの学習の有効性にもかかわらず、連続的な埋め込み空間におけるユーザの好みを推測する計算コストは膨大である。
連続的かつ離散的なコードとを協調的に学習するための,単純かつ効果的な離散表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-04T06:59:56Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
本稿では,高速な物体検出のための新しいディープラーニングアルゴリズムを提案する。
提案アルゴリズムは,1つのCPUスレッドと同時に,競合精度と高い推論効率を実現する。
論文 参考訳(メタデータ) (2020-01-22T15:23:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。