ARCLE: The Abstraction and Reasoning Corpus Learning Environment for Reinforcement Learning
- URL: http://arxiv.org/abs/2407.20806v1
- Date: Tue, 30 Jul 2024 13:11:45 GMT
- Title: ARCLE: The Abstraction and Reasoning Corpus Learning Environment for Reinforcement Learning
- Authors: Hosung Lee, Sejin Kim, Seungpil Lee, Sanha Hwang, Jihwan Lee, Byung-Jun Lee, Sundong Kim,
- Abstract summary: ARCLE is an environment designed to facilitate reinforcement learning research on the inductive reasoning benchmark.
We demonstrate that an agent with proximal policy optimization can learn individual tasks through ARCLE.
We propose several research directions and motivations for using ARCLE, including MAML, GFlowNets, and World Models.
- Score: 9.134178145285693
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces ARCLE, an environment designed to facilitate reinforcement learning research on the Abstraction and Reasoning Corpus (ARC). Addressing this inductive reasoning benchmark with reinforcement learning presents these challenges: a vast action space, a hard-to-reach goal, and a variety of tasks. We demonstrate that an agent with proximal policy optimization can learn individual tasks through ARCLE. The adoption of non-factorial policies and auxiliary losses led to performance enhancements, effectively mitigating issues associated with action spaces and goal attainment. Based on these insights, we propose several research directions and motivations for using ARCLE, including MAML, GFlowNets, and World Models.
Related papers
- CAREL: Instruction-guided reinforcement learning with cross-modal auxiliary objectives [2.4392539322920763]
Grounding the instruction in the environment is a key step in solving language-guided goal-reaching reinforcement learning problems.
We propose CAREL as a new framework to solve this problem using auxiliary loss functions inspired by video-text retrieval literature.
Results of our experiments suggest superior sample efficiency and systematic generalization for this framework in multi-modal reinforcement learning problems.
arXiv Detail & Related papers (2024-11-29T15:49:06Z) - Enhancing LLM Reasoning with Reward-guided Tree Search [95.06503095273395]
o1-like reasoning approach is challenging, and researchers have been making various attempts to advance this open area of research.
We present a preliminary exploration into enhancing the reasoning abilities of LLMs through reward-guided tree search algorithms.
arXiv Detail & Related papers (2024-11-18T16:15:17Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
Cross-modal reasoning (CMR) is increasingly recognized as a crucial capability in the progression toward more sophisticated artificial intelligence systems.
The recent trend of deploying Large Language Models (LLMs) to tackle CMR tasks has marked a new mainstream of approaches for enhancing their effectiveness.
This survey offers a nuanced exposition of current methodologies applied in CMR using LLMs, classifying these into a detailed three-tiered taxonomy.
arXiv Detail & Related papers (2024-09-19T02:51:54Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
Strategic reasoning requires understanding and predicting adversary actions in multi-agent settings while adjusting strategies accordingly.
We explore the scopes, applications, methodologies, and evaluation metrics related to strategic reasoning with Large Language Models.
It underscores the importance of strategic reasoning as a critical cognitive capability and offers insights into future research directions and potential improvements.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - LLMs Learn Task Heuristics from Demonstrations: A Heuristic-Driven Prompting Strategy for Document-Level Event Argument Extraction [12.673710691468264]
We introduce the Heuristic-Driven Link-of- Analogy (HD-LoA) prompting to address the challenge of example selection.
Inspired by the analogical reasoning of human, we propose the link-of-analogy prompting, which enables LLMs to process new situations.
Experiments show that our method outperforms existing prompting methods and few-shot supervised learning methods on document-level EAE datasets.
arXiv Detail & Related papers (2023-11-11T12:05:01Z) - Option-Aware Adversarial Inverse Reinforcement Learning for Robotic
Control [44.77500987121531]
Hierarchical Imitation Learning (HIL) has been proposed to recover highly-complex behaviors in long-horizon tasks from expert demonstrations.
We develop a novel HIL algorithm based on Adversarial Inverse Reinforcement Learning.
We also propose a Variational Autoencoder framework for learning with our objectives in an end-to-end fashion.
arXiv Detail & Related papers (2022-10-05T00:28:26Z) - Human AI interaction loop training: New approach for interactive
reinforcement learning [0.0]
Reinforcement Learning (RL) in various decision-making tasks of machine learning provides effective results with an agent learning from a stand-alone reward function.
RL presents unique challenges with large amounts of environment states and action spaces, as well as in the determination of rewards.
Imitation Learning (IL) offers a promising solution for those challenges using a teacher.
arXiv Detail & Related papers (2020-03-09T15:27:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.