論文の概要: DyGKT: Dynamic Graph Learning for Knowledge Tracing
- arxiv url: http://arxiv.org/abs/2407.20824v1
- Date: Tue, 30 Jul 2024 13:43:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 17:10:01.054924
- Title: DyGKT: Dynamic Graph Learning for Knowledge Tracing
- Title(参考訳): DyGKT:知識追跡のための動的グラフ学習
- Authors: Ke Cheng, Linzhi Peng, Pengyang Wang, Junchen Ye, Leilei Sun, Bowen Du,
- Abstract要約: 本研究の動機は,(1) 記録に回答する学生の規模が常に増大していること,(2) 記録間の時間間隔のセマンティクスが異なること,(3) 学生,質問,概念の関係が進化していること,の3つである。
この線に沿って,動的グラフに基づく知識追跡モデル,すなわちDyGKTを提案する。
特に、知識追跡のための連続時間動的問合せグラフは、無限に増加する応答行動に対処するために構築される。
- 参考スコア(独自算出の注目度): 27.886870568131254
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge Tracing aims to assess student learning states by predicting their performance in answering questions. Different from the existing research which utilizes fixed-length learning sequence to obtain the student states and regards KT as a static problem, this work is motivated by three dynamical characteristics: 1) The scales of students answering records are constantly growing; 2) The semantics of time intervals between the records vary; 3) The relationships between students, questions and concepts are evolving. The three dynamical characteristics above contain the great potential to revolutionize the existing knowledge tracing methods. Along this line, we propose a Dynamic Graph-based Knowledge Tracing model, namely DyGKT. In particular, a continuous-time dynamic question-answering graph for knowledge tracing is constructed to deal with the infinitely growing answering behaviors, and it is worth mentioning that it is the first time dynamic graph learning technology is used in this field. Then, a dual time encoder is proposed to capture long-term and short-term semantics among the different time intervals. Finally, a multiset indicator is utilized to model the evolving relationships between students, questions, and concepts via the graph structural feature. Numerous experiments are conducted on five real-world datasets, and the results demonstrate the superiority of our model. All the used resources are publicly available at https://github.com/PengLinzhi/DyGKT.
- Abstract(参考訳): 知識追跡は、質問に答える際の成績を予測することによって、学生の学習状態を評価することを目的としている。
固定長の学習シーケンスを用いて学生の状態を取得し、KTを静的問題とみなす既存の研究とは異なり、この研究は3つの動的特徴によって動機付けられている。
1) 記録に回答する学生の規模は, 常に増大している。
2) 記録間の時間間隔のセマンティクスは様々である。
3)学生,質問,概念の関係は進展している。
上記の3つの力学特性は、既存の知識追跡手法に革命をもたらす大きな可能性を含んでいる。
この線に沿って,動的グラフに基づく知識追跡モデル,すなわちDyGKTを提案する。
特に、知識追跡のための連続時間動的問合せグラフは、無限に増加する解答行動に対処するために構築されており、この分野では初めて動的グラフ学習技術が使用されることに留意する必要がある。
次に、時間間隔の異なる長期的および短期的な意味をキャプチャするために、二重時間エンコーダを提案する。
最後に、グラフ構造の特徴を通して、学生、質問、概念間の進化する関係をモデル化するために、マルチセットインジケータを利用する。
5つの実世界のデータセットで多数の実験を行い,本モデルの有効性を実証した。
使用中のリソースはすべてhttps://github.com/PengLinzhi/DyGKT.comで公開されている。
関連論文リスト
- Temporal Graph Memory Networks For Knowledge Tracing [0.40964539027092906]
本稿では,深部時間グラフメモリネットワークを用いて,知識状態の関連性と時間的ダイナミクスを協調的にモデル化する手法を提案する。
また,グラフメモリモジュール上の時間減衰制約を用いて,学生の忘れ行動を表現する汎用手法を提案する。
論文 参考訳(メタデータ) (2024-09-23T07:47:02Z) - SINKT: A Structure-Aware Inductive Knowledge Tracing Model with Large Language Model [64.92472567841105]
知識追跡(KT)は、学生が次の質問に正しく答えるかどうかを判断することを目的としている。
大規模言語モデルを用いた構造認識帰納的知識追跡モデル(SINKT)
SINKTは、学生の知識状態と質問表現とを相互作用させることで、対象の質問に対する学生の反応を予測する。
論文 参考訳(メタデータ) (2024-07-01T12:44:52Z) - Node-Time Conditional Prompt Learning In Dynamic Graphs [14.62182210205324]
DYGPROMPTは動的グラフモデリングのための新しい事前学習および迅速な学習フレームワークである。
我々はノードと時間の特徴が相互に特徴付けることを認識し、下流タスクにおけるノード時間パターンの進化をモデル化するための2つの条件ネットを提案する。
論文 参考訳(メタデータ) (2024-05-22T19:10:24Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Exploring Large Language Models for Knowledge Graph Completion [17.139056629060626]
我々は知識グラフのトリプルをテキストシーケンスとみなし、知識グラフLLMと呼ばれる革新的なフレームワークを導入する。
提案手法では,三重項の実体的記述と関係的記述をプロンプトとして利用し,その応答を予測に利用する。
種々のベンチマーク知識グラフを用いた実験により,三重分類や関係予測といったタスクにおいて,本手法が最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2023-08-26T16:51:17Z) - A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic,
and Multimodal [57.8455911689554]
知識グラフ推論(KGR)は、知識グラフに基づくマイニング論理則に基づいて、既存の事実から新しい事実を推論することを目的としている。
質問応答やレコメンデーションシステムなど、多くのAIアプリケーションでKGを使うことに大きなメリットがあることが証明されている。
論文 参考訳(メタデータ) (2022-12-12T08:40:04Z) - DyTed: Disentangled Representation Learning for Discrete-time Dynamic
Graph [59.583555454424]
離散時間動的グラフ、すなわちDyTedのための新しいディペンタングル表現学習フレームワークを提案する。
本研究では,時間不変の表現と時間変動の表現を効果的に識別する構造的コントラスト学習とともに,時間的クリップのコントラスト学習タスクを特別に設計する。
論文 参考訳(メタデータ) (2022-10-19T14:34:12Z) - Dynamic Graph Learning-Neural Network for Multivariate Time Series
Modeling [2.3022070933226217]
静的および動的グラフ学習ニューラルネットワーク(GL)という新しいフレームワークを提案する。
モデルはそれぞれ、データから静的グラフ行列と動的グラフ行列を取得し、長期パターンと短期パターンをモデル化する。
ほぼすべてのデータセットで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-12-06T08:19:15Z) - Deep Graph Memory Networks for Forgetting-Robust Knowledge Tracing [5.648636668261282]
本稿では,新しい知識追跡モデル,すなわちemphDeep Graph Memory Network(DGMN)を提案する。
このモデルでは、忘れる動作を捉えるために、注意記憶構造に忘れるゲーティング機構を組み込む。
このモデルは動的潜在概念グラフから潜在概念間の関係を学習する能力を有する。
論文 参考訳(メタデータ) (2021-08-18T12:04:10Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。