Automatic Die Studies for Ancient Numismatics
- URL: http://arxiv.org/abs/2407.20876v1
- Date: Tue, 30 Jul 2024 14:54:54 GMT
- Title: Automatic Die Studies for Ancient Numismatics
- Authors: Clément Cornet, Héloïse Aumaître, Romaric Besançon, Julien Olivier, Thomas Faucher, Hervé Le Borgne,
- Abstract summary: Die studies are fundamental to quantifying ancient monetary production.
Few works have attempted to automate this task, and none have been properly released and evaluated from a computer vision perspective.
We propose a fully automatic approach that introduces several innovations compared to previous methods.
- Score: 3.384989790372139
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Die studies are fundamental to quantifying ancient monetary production, providing insights into the relationship between coinage, politics, and history. The process requires tedious manual work, which limits the size of the corpora that can be studied. Few works have attempted to automate this task, and none have been properly released and evaluated from a computer vision perspective. We propose a fully automatic approach that introduces several innovations compared to previous methods. We rely on fast and robust local descriptors matching that is set automatically. Second, the core of our proposal is a clustering-based approach that uses an intrinsic metric (that does not need the ground truth labels) to determine its critical hyper-parameters. We validate the approach on two corpora of Greek coins, propose an automatic implementation and evaluation of previous baselines, and show that our approach significantly outperforms them.
Related papers
- Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations [80.86128012438834]
We show for the first time that computing the robustness of counterfactuals with respect to plausible model shifts is NP-complete.
We propose a novel probabilistic approach which is able to provide tight estimates of robustness with strong guarantees.
arXiv Detail & Related papers (2024-07-10T09:13:11Z) - RelevAI-Reviewer: A Benchmark on AI Reviewers for Survey Paper Relevance [0.8089605035945486]
We propose RelevAI-Reviewer, an automatic system that conceptualizes the task of survey paper review as a classification problem.
We introduce a novel dataset comprised of 25,164 instances. Each instance contains one prompt and four candidate papers, each varying in relevance to the prompt.
We develop a machine learning (ML) model capable of determining the relevance of each paper and identifying the most pertinent one.
arXiv Detail & Related papers (2024-06-13T06:42:32Z) - When is an Embedding Model More Promising than Another? [33.540506562970776]
Embedders play a central role in machine learning, projecting any object into numerical representations that can be leveraged to perform various downstream tasks.
The evaluation of embedding models typically depends on domain-specific empirical approaches.
We present a unified approach to evaluate embedders, drawing upon the concepts of sufficiency and informativeness.
arXiv Detail & Related papers (2024-06-11T18:13:46Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - Rubric-Specific Approach to Automated Essay Scoring with Augmentation
Training [0.1227734309612871]
We propose a series of data augmentation operations that train and test an automated scoring model to learn features and functions overlooked by previous works.
We achieve state-of-the-art performance in the Automated Student Assessment Prize dataset.
arXiv Detail & Related papers (2023-09-06T05:51:19Z) - Contextualized Topic Coherence Metrics [6.630482733703617]
We propose methods inspired by standard human topic evaluations, in a family of metrics called Contextualized Topic Coherence ( CTC)
We evaluate CTC relative to five other metrics on six topic models and find that it outperforms automated topic coherence methods.
arXiv Detail & Related papers (2023-05-23T23:53:29Z) - The Glass Ceiling of Automatic Evaluation in Natural Language Generation [60.59732704936083]
We take a step back and analyze recent progress by comparing the body of existing automatic metrics and human metrics.
Our extensive statistical analysis reveals surprising findings: automatic metrics -- old and new -- are much more similar to each other than to humans.
arXiv Detail & Related papers (2022-08-31T01:13:46Z) - On Learning Text Style Transfer with Direct Rewards [101.97136885111037]
Lack of parallel corpora makes it impossible to directly train supervised models for the text style transfer task.
We leverage semantic similarity metrics originally used for fine-tuning neural machine translation models.
Our model provides significant gains in both automatic and human evaluation over strong baselines.
arXiv Detail & Related papers (2020-10-24T04:30:02Z) - PONE: A Novel Automatic Evaluation Metric for Open-Domain Generative
Dialogue Systems [48.99561874529323]
There are three kinds of automatic methods to evaluate the open-domain generative dialogue systems.
Due to the lack of systematic comparison, it is not clear which kind of metrics are more effective.
We propose a novel and feasible learning-based metric that can significantly improve the correlation with human judgments.
arXiv Detail & Related papers (2020-04-06T04:36:33Z) - SideInfNet: A Deep Neural Network for Semi-Automatic Semantic
Segmentation with Side Information [83.03179580646324]
This paper proposes a novel deep neural network architecture, namely SideInfNet.
It integrates features learnt from images with side information extracted from user annotations.
To evaluate our method, we applied the proposed network to three semantic segmentation tasks and conducted extensive experiments on benchmark datasets.
arXiv Detail & Related papers (2020-02-07T06:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.