論文の概要: EAR: Edge-Aware Reconstruction of 3-D vertebrae structures from bi-planar X-ray images
- arxiv url: http://arxiv.org/abs/2407.20937v2
- Date: Mon, 5 Aug 2024 01:27:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 19:59:40.920582
- Title: EAR: Edge-Aware Reconstruction of 3-D vertebrae structures from bi-planar X-ray images
- Title(参考訳): EAR:両平面X線画像からの3次元椎骨構造のエッジアウェア再構成
- Authors: Lixing Tan, Shuang Song, Yaofeng He, Kangneng Zhou, Tong Lu, Ruoxiu Xiao,
- Abstract要約: 本稿では,新しいエッジ・アウェア・コンストラクション・ネットワーク(EAR)を提案する。
自動エンコーダアーキテクチャをバックボーンとして,エッジアテンションモジュールと周波数拡張モジュールを提案する。
提案手法は3つの公開データセットを用いて評価し、4つの最先端モデルと比較した。
- 参考スコア(独自算出の注目度): 19.902946440205966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: X-ray images ease the diagnosis and treatment process due to their rapid imaging speed and high resolution. However, due to the projection process of X-ray imaging, much spatial information has been lost. To accurately provide efficient spinal morphological and structural information, reconstructing the 3-D structures of the spine from the 2-D X-ray images is essential. It is challenging for current reconstruction methods to preserve the edge information and local shapes of the asymmetrical vertebrae structures. In this study, we propose a new Edge-Aware Reconstruction network (EAR) to focus on the performance improvement of the edge information and vertebrae shapes. In our network, by using the auto-encoder architecture as the backbone, the edge attention module and frequency enhancement module are proposed to strengthen the perception of the edge reconstruction. Meanwhile, we also combine four loss terms, including reconstruction loss, edge loss, frequency loss and projection loss. The proposed method is evaluated using three publicly accessible datasets and compared with four state-of-the-art models. The proposed method is superior to other methods and achieves 25.32%, 15.32%, 86.44%, 80.13%, 23.7612 and 0.3014 with regard to MSE, MAE, Dice, SSIM, PSNR and frequency distance. Due to the end-to-end and accurate reconstruction process, EAR can provide sufficient 3-D spatial information and precise preoperative surgical planning guidance.
- Abstract(参考訳): X線画像は、画像の高速化と高解像度化により、診断と治療のプロセスが簡単になる。
しかし、X線画像の投影過程により、多くの空間情報が失われている。
2次元X線画像から脊椎の3次元構造を再構築することが不可欠である、効率的な脊椎形態及び構造情報を高精度に提供すること。
現状の再建法では、非対称の椎骨構造の縁情報と局所的な形状を保存することは困難である。
本研究では,新しいエッジ・アウェア・コンストラクション・ネットワーク(EAR)を提案する。
本稿では,自動エンコーダアーキテクチャをバックボーンとして,エッジアテンションモジュールと周波数拡張モジュールを提案する。
また、再建損失、エッジ損失、周波数損失、投射損失の4つの損失項を組み合わせる。
提案手法は3つの公開データセットを用いて評価し、4つの最先端モデルと比較した。
提案手法は, MSE, MAE, Dice, SSIM, PSNR, 周波数距離に関して, 25.32%, 15.32%, 86.44%, 80.13%, 23.7612, 0.3014 である。
エンドツーエンドで正確な再建プロセスのため、EARは十分な3次元空間情報と正確な手術計画ガイダンスを提供することができる。
関連論文リスト
- TomoGRAF: A Robust and Generalizable Reconstruction Network for Single-View Computed Tomography [3.1209855614927275]
従来の解析的・定性的なCT再構成アルゴリズムは数百の角データサンプリングを必要とする。
我々は,高品質な3Dボリュームを再構成するために,ユニークなX線輸送物理を取り入れた新しいTtomoGRAFフレームワークを開発した。
論文 参考訳(メタデータ) (2024-11-12T20:07:59Z) - SdCT-GAN: Reconstructing CT from Biplanar X-Rays with Self-driven
Generative Adversarial Networks [6.624839896733912]
本稿では,3次元CT画像の再構成のための自己駆動型生成対向ネットワークモデル(SdCT-GAN)を提案する。
識別器に新しいオートエンコーダ構造を導入することにより、画像の詳細により多くの注意を払っている。
LPIPS評価基準は,既存画像よりも微細な輪郭やテクスチャを定量的に評価できる。
論文 参考訳(メタデータ) (2023-09-10T08:16:02Z) - Multi-View Vertebra Localization and Identification from CT Images [57.56509107412658]
我々は,CT画像からの多視点椎体局在と同定を提案する。
本研究では,3次元問題を異なる視点における2次元局所化および識別タスクに変換する。
本手法は,多視点グローバル情報を自然に学習することができる。
論文 参考訳(メタデータ) (2023-07-24T14:43:07Z) - XTransCT: Ultra-Fast Volumetric CT Reconstruction using Two Orthogonal
X-Ray Projections for Image-guided Radiation Therapy via a Transformer
Network [8.966238080182263]
XTransCTと呼ばれる新しいトランスフォーマーアーキテクチャを導入し,2次元X線画像からのCT画像のリアルタイム再構成を容易にする。
本研究は, 画像品質, 構造精度, 一般化性において, アルゴリズムが他の手法を超越していることを示す。
従来の3次元畳み込み法と比較して, 約300 %の大幅な速度向上が見られ, 3次元画像再構成で44msを達成できた。
論文 参考訳(メタデータ) (2023-05-31T07:41:10Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) は臨床画像撮影において重要な役割を担っている。
従来の方法では、高品質な3D CBCT画像の再構成には数百の2次元X線投影が必要である。
これにより、放射線線量を減らすため、スパースビューCBCT再構成への関心が高まっている。
本稿では,この問題を解決するために,新しい幾何対応エンコーダデコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-26T14:38:42Z) - Perspective Projection-Based 3D CT Reconstruction from Biplanar X-rays [32.98966469644061]
我々は,X線を用いた新しいCT再構成フレームワークPerX2CTを提案する。
提案手法は,各座標に対して異なる特徴の組み合わせを提供し,モデルが3次元位置に関する情報を暗黙的に取得できるようにする。
論文 参考訳(メタデータ) (2023-03-09T14:45:25Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - 3D Reconstruction of Curvilinear Structures with Stereo Matching
DeepConvolutional Neural Networks [52.710012864395246]
本稿では,立体対における曲線構造の検出とマッチングのための完全自動パイプラインを提案する。
主に、TEM画像のステレオ対から転位を3次元再構成することに焦点を当てる。
論文 参考訳(メタデータ) (2021-10-14T23:05:47Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z) - End-To-End Convolutional Neural Network for 3D Reconstruction of Knee
Bones From Bi-Planar X-Ray Images [6.645111950779666]
両平面X線画像から直接膝骨を3次元再構成するためのエンドツーエンド畳み込みニューラルネットワーク(CNN)を提案する。
論文 参考訳(メタデータ) (2020-04-02T08:37:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。