論文の概要: An evidence-based methodology for human rights impact assessment (HRIA) in the development of AI data-intensive systems
- arxiv url: http://arxiv.org/abs/2407.20951v1
- Date: Tue, 30 Jul 2024 16:27:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 16:30:51.624586
- Title: An evidence-based methodology for human rights impact assessment (HRIA) in the development of AI data-intensive systems
- Title(参考訳): AIデータ集約システムの開発における人権影響評価(HRIA)のエビデンスに基づく方法論
- Authors: Alessandro Mantelero, Maria Samantha Esposito,
- Abstract要約: 我々は、すでに人権がデータ利用の分野で決定を下していることを示している。
本研究は人権影響評価(HRIA)の方法論とモデルである。
提案手法は,具体的ケーススタディで検証し,その有効性と有効性を示す。
- 参考スコア(独自算出の注目度): 49.1574468325115
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Different approaches have been adopted in addressing the challenges of Artificial Intelligence (AI), some centred on personal data and others on ethics, respectively narrowing and broadening the scope of AI regulation. This contribution aims to demonstrate that a third way is possible, starting from the acknowledgement of the role that human rights can play in regulating the impact of data-intensive systems. The focus on human rights is neither a paradigm shift nor a mere theoretical exercise. Through the analysis of more than 700 decisions and documents of the data protection authorities of six countries, we show that human rights already underpin the decisions in the field of data use. Based on empirical analysis of this evidence, this work presents a methodology and a model for a Human Rights Impact Assessment (HRIA). The methodology and related assessment model are focused on AI applications, whose nature and scale require a proper contextualisation of HRIA methodology. Moreover, the proposed models provide a more measurable approach to risk assessment which is consistent with the regulatory proposals centred on risk thresholds. The proposed methodology is tested in concrete case-studies to prove its feasibility and effectiveness. The overall goal is to respond to the growing interest in HRIA, moving from a mere theoretical debate to a concrete and context-specific implementation in the field of data-intensive applications based on AI.
- Abstract(参考訳): 人工知能(AI)の課題に対処するさまざまなアプローチが採用されており、一部は個人データ、その他は倫理に重点を置いており、それぞれがAI規制の範囲を狭め、拡大している。
この貢献は、データ集約システムの影響を規制する上で人権が果たす役割の認識から始まり、第三の方法が可能であることを示すことを目的としている。
人権への焦点はパラダイムシフトでも理論的なエクササイズでもない。
6か国のデータ保護当局の700以上の決定と文書の分析を通じて、すでに人権がデータ利用の分野で決定を下していることを示す。
本研究は, この証拠の実証分析に基づいて, HRIA(Human Rights Impact Assessment)の方法論とモデルを示す。
方法論と関連するアセスメントモデルは、HRIA方法論の適切なコンテキスト化を必要とする性質とスケールを必要とするAIアプリケーションに焦点を当てている。
さらに,提案モデルでは,リスクしきい値を中心とした規制提案と一致したリスク評価に対して,より測定可能なアプローチを提供する。
提案手法は,具体的ケーススタディで検証し,その有効性と有効性を示す。
全体的な目標は、単なる理論的議論から、AIに基づいたデータ集約型アプリケーション分野における具体的かつコンテキスト固有の実装へと移行する、HRIAへの関心の高まりに対応することだ。
関連論文リスト
- Human services organizations and the responsible integration of AI: Considering ethics and contextualizing risk(s) [0.0]
著者らは、AIデプロイメントに関する倫理的懸念は、実装コンテキストや特定のユースケースによって大きく異なると主張している。
彼らは、データ感度、専門的な監視要件、クライアントの幸福に対する潜在的影響などの要因を考慮に入れた、次元的リスクアセスメントアプローチを提案する。
論文 参考訳(メタデータ) (2025-01-20T19:38:21Z) - Socio-Economic Consequences of Generative AI: A Review of Methodological Approaches [0.0]
我々は、生成AIの導入による経済的および社会的影響を予測するのに使用される主要な方法論を特定する。
総合的な文献レビューを通じて、我々はこの技術革命の多面的影響を評価するための様々な方法論を明らかにした。
論文 参考訳(メタデータ) (2024-11-14T09:40:25Z) - The Fundamental Rights Impact Assessment (FRIA) in the AI Act: Roots, legal obligations and key elements for a model template [55.2480439325792]
基本権利影響評価(FRIA)の理論的・方法論的検討における既存のギャップを埋めることを目的とする。
この記事では、FRIAのモデルテンプレートの主要なビルディングブロックについて概説する。
これは、AIが人権と完全に整合していることを保証するために、他の国家および国際規制イニシアチブの青写真として機能する。
論文 参考訳(メタデータ) (2024-11-07T11:55:55Z) - Rethinking Model Evaluation as Narrowing the Socio-Technical Gap [47.632123167141245]
モデル評価の実践は、この均質化によってもたらされる課題や責任に対処するために、重要なタスクを負わなければならない、と我々は主張する。
我々は,現実の文脈と人間の要求に基づく評価手法の開発をコミュニティに促す。
論文 参考訳(メタデータ) (2023-06-01T00:01:43Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - Ground(less) Truth: A Causal Framework for Proxy Labels in
Human-Algorithm Decision-Making [29.071173441651734]
人間のAI意思決定タスクにおけるプロキシラベルの有効性に影響を与える5つの変数バイアス源を同定する。
各バイアス間の関係を乱すための因果的枠組みを開発する。
今後の研究において、ターゲット変数バイアスに対処する機会について論じる。
論文 参考訳(メタデータ) (2023-02-13T16:29:11Z) - Reinforcement Learning with Heterogeneous Data: Estimation and Inference [84.72174994749305]
人口の不均一性に関する逐次的決定問題に対処するために,K-ヘテロ・マルコフ決定過程(K-ヘテロ・MDP)を導入する。
本稿では、ある政策の価値を推定するための自己クラスタ化政策評価(ACPE)と、ある政策クラスにおける最適な政策を推定するための自己クラスタ化政策イテレーション(ACPI)を提案する。
理論的な知見を裏付けるシミュレーションを行い,MIMIC-III標準データセットの実証的研究を行った。
論文 参考訳(メタデータ) (2022-01-31T20:58:47Z) - Achieving a Data-driven Risk Assessment Methodology for Ethical AI [3.523208537466128]
我々は,AIを用いた組織が直面する倫理的・社会的リスクの実践的定義の基盤として,多分野の研究アプローチが重要であることを示す。
本稿では,DRESS-eAIという新たなリスク評価手法を提案する。
論文 参考訳(メタデータ) (2021-11-29T12:55:33Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。