論文の概要: Learning Ordinality in Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2407.20959v1
- Date: Tue, 30 Jul 2024 16:36:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 16:30:51.613920
- Title: Learning Ordinality in Semantic Segmentation
- Title(参考訳): セマンティックセグメンテーションにおける学習規則
- Authors: Rafael Cristino, Ricardo P. M. Cruz, Jaime S. Cardoso,
- Abstract要約: 瞳孔は虹彩の中にあり、車線標識は道路の内側にあることが知られている。
従来のディープラーニングモデルは、手元にドメインに存在する可能性のある順序関係を生かしていない。
本稿では,各画素を独立観察として扱い,その表現における順序性を促進する画素単位の順序分節法を提案する。
- 参考スコア(独自算出の注目度): 3.017721041662511
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic segmentation consists of predicting a semantic label for each image pixel. Conventional deep learning models do not take advantage of ordinal relations that might exist in the domain at hand. For example, it is known that the pupil is inside the iris, and the lane markings are inside the road. Such domain knowledge can be employed as constraints to make the model more robust. The current literature on this topic has explored pixel-wise ordinal segmentation methods, which treat each pixel as an independent observation and promote ordinality in its representation. This paper proposes novel spatial ordinal segmentation methods, which take advantage of the structured image space by considering each pixel as an observation dependent on its neighborhood context to also promote ordinal spatial consistency. When evaluated with five biomedical datasets and multiple configurations of autonomous driving datasets, ordinal methods resulted in more ordinally-consistent models, with substantial improvements in ordinal metrics and some increase in the Dice coefficient. It was also shown that the incorporation of ordinal consistency results in models with better generalization abilities.
- Abstract(参考訳): セマンティックセグメンテーションは、各画像ピクセルのセマンティックラベルを予測することで構成される。
従来のディープラーニングモデルは、手元にドメインに存在する可能性のある順序関係を生かしていない。
例えば、瞳孔は虹彩の内側にあり、車線標識は道路の内側にあることが知られている。
このようなドメイン知識は、モデルをより堅牢にするための制約として利用することができる。
この話題に関する現在の文献は、各ピクセルを独立した観察として扱い、その表現における順序性を促進するピクセル単位の順序分節法を探求している。
本稿では,各画素を周辺環境に依存した観察として考慮し,空間空間の空間的整合性も促進する,新しい空間的順序分割法を提案する。
5つのバイオメディカルデータセットと自律運転データセットの複数構成で評価すると、規則的手法はより規則的に一貫性のあるモデルとなり、順序的指標は大幅に改善され、Dice係数は若干向上した。
また、順序整合性の導入により、より優れた一般化能力を持つモデルが得られることを示した。
関連論文リスト
- EmerDiff: Emerging Pixel-level Semantic Knowledge in Diffusion Models [52.3015009878545]
我々は、追加の訓練をすることなく、きめ細かなセグメンテーションマップを生成できる画像セグメンタを開発した。
低次元特徴写像の空間的位置と画像画素間の意味的対応を同定する。
大規模な実験では、生成したセグメンテーションマップがよく説明され、画像の細部を捉えることが示されている。
論文 参考訳(メタデータ) (2024-01-22T07:34:06Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
本稿では,マルチモーダル群画像登録のための一般ベイズ学習フレームワークを提案する。
本稿では,潜在変数の推論手順を実現するために,新しい階層的変分自動符号化アーキテクチャを提案する。
心臓、脳、腹部の医療画像から4つの異なるデータセットを含む,提案された枠組みを検証する実験を行った。
論文 参考訳(メタデータ) (2024-01-04T08:46:39Z) - Stochastic Segmentation with Conditional Categorical Diffusion Models [3.8168879948759953]
Denoising Diffusion Probabilistic Models に基づくセマンティックセグメンテーションのための条件カテゴリー拡散モデル(CCDM)を提案する。
以上の結果から,CCDMはLIDC上での最先端性能を実現し,従来のセグメンテーションデータセットであるCityscapesのベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-03-15T19:16:47Z) - CORE: Learning Consistent Ordinal REpresentations for Image Ordinal
Estimation [35.39143939072549]
本稿では,本研究の基盤となるラベルに存在する順序関係から,本質的な一貫性のある順序表現(CORE)を学習することを提案する。
COREは、順序付き潜在空間を正確に構築し、より優れた結果を得るために既存の深い順序付き回帰法を大幅に強化することができる。
論文 参考訳(メタデータ) (2023-01-15T15:42:26Z) - SePiCo: Semantic-Guided Pixel Contrast for Domain Adaptive Semantic
Segmentation [52.62441404064957]
ドメイン適応セマンティックセグメンテーションは、ラベル付きソースドメインでトレーニングされたモデルを利用することで、ラベル付きターゲットドメイン上で満足のいく密度の予測を試みる。
多くの手法は、ノイズの多い擬似ラベルを緩和する傾向があるが、類似のセマンティックな概念を持つクロスドメインピクセル間の固有の接続を無視する。
本稿では,個々の画素のセマンティックな概念を強調する一段階適応フレームワークSePiCoを提案する。
論文 参考訳(メタデータ) (2022-04-19T11:16:29Z) - BI-GCN: Boundary-Aware Input-Dependent Graph Convolution Network for
Biomedical Image Segmentation [21.912509900254364]
セグメント化タスクにグラフ畳み込みを適用し,改良されたtextitLaplacianを提案する。
本手法は,大腸内視鏡像におけるポリープの分画と光ディスク,光カップのカラーファンドス画像における画期的なアプローチよりも優れていた。
論文 参考訳(メタデータ) (2021-10-27T21:12:27Z) - Unsupervised Image Segmentation by Mutual Information Maximization and
Adversarial Regularization [7.165364364478119]
InMARS(Information Maximization and Adrial Regularization)と呼ばれる新しい教師なしセマンティックセマンティックセマンティクス手法を提案する。
シーンを知覚群に解析する人間の知覚に触発され、提案手法はまず、入力画像を意味のある領域(スーパーピクセルとも呼ばれる)に分割する。
次に、相互情報最大化(Multual-Information-Maximization)と、それらの領域を意味論的に意味のあるクラスにクラスタ化するための敵対的トレーニング戦略を利用する。
提案手法は2つの非教師付きセマンティックセグメンテーションデータセット上での最先端性能を実現することを実証した。
論文 参考訳(メタデータ) (2021-07-01T18:36:27Z) - Semantic Distribution-aware Contrastive Adaptation for Semantic
Segmentation [50.621269117524925]
ドメイン適応セマンティックセグメンテーション(ドメイン適応セマンティックセグメンテーション)とは、特定のソースドメインのアノテーションだけで特定のターゲットドメイン上で予測を行うことを指す。
画素ワイド表示アライメントを可能にする意味分布対応コントラスト適応アルゴリズムを提案する。
複数のベンチマークでSDCAを評価し、既存のアルゴリズムを大幅に改善します。
論文 参考訳(メタデータ) (2021-05-11T13:21:25Z) - Rethinking Semantic Segmentation Evaluation for Explainability and Model
Selection [12.786648212233116]
地域ベースのオーバーおよびアンダーセグメンテーションを評価するための新しいメトリクスを紹介します。
分析して他のメトリクスと比較し、実世界のアプリケーションにおけるセマンティックセグメンテーションモデルのパフォーマンスをより説明しやすくなることを示す。
論文 参考訳(メタデータ) (2021-01-21T03:12:43Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
2つのニューラルコアテンションを分類器に組み込んで、画像間のセマンティックな類似点と相違点をキャプチャする。
オブジェクトパターン学習の強化に加えて、コアテンションは他の関連する画像からのコンテキストを活用して、ローカライズマップの推論を改善することができる。
提案アルゴリズムは,これらすべての設定に対して新たな最先端性を設定し,その有効性と一般化性を示す。
論文 参考訳(メタデータ) (2020-07-03T21:53:46Z) - Hierarchical Image Classification using Entailment Cone Embeddings [68.82490011036263]
まずラベル階層の知識を任意のCNNベースの分類器に注入する。
画像からの視覚的セマンティクスと組み合わせた外部セマンティクス情報の利用が全体的な性能を高めることを実証的に示す。
論文 参考訳(メタデータ) (2020-04-02T10:22:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。