論文の概要: Learning Ordinality in Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2407.20959v2
- Date: Wed, 05 Feb 2025 15:16:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:25:19.755783
- Title: Learning Ordinality in Semantic Segmentation
- Title(参考訳): セマンティックセグメンテーションにおける学習規則
- Authors: Ricardo P. M. Cruz, Rafael Cristino, Jaime S. Cardoso,
- Abstract要約: 本稿では,空間順序分節の新しい手法を提案する。
隣接する画素間の順序整合を強制するための2つの正規化項と新しいメートル法を提案する。
提案手法は,Dice係数の相対的増加を最大15.7%に抑えて,順序数測定の改善と一般化の促進を実現する。
- 参考スコア(独自算出の注目度): 3.017721041662511
- License:
- Abstract: Semantic segmentation consists of predicting a semantic label for each image pixel. While existing deep learning approaches achieve high accuracy, they often overlook the ordinal relationships between classes, which can provide critical domain knowledge (e.g., the pupil lies within the iris, and lane markings are part of the road). This paper introduces novel methods for spatial ordinal segmentation that explicitly incorporate these inter-class dependencies. By treating each pixel as part of a structured image space rather than as an independent observation, we propose two regularization terms and a new metric to enforce ordinal consistency between neighboring pixels. Two loss regularization terms and one metric are proposed for structural ordinal segmentation, which penalizes predictions of non-ordinal adjacent classes. Five biomedical datasets and multiple configurations of autonomous driving datasets demonstrate the efficacy of the proposed methods. Our approach achieves improvements in ordinal metrics and enhances generalization, with up to a 15.7% relative increase in the Dice coefficient. Importantly, these benefits come without additional inference time costs. This work highlights the significance of spatial ordinal relationships in semantic segmentation and provides a foundation for further exploration in structured image representations.
- Abstract(参考訳): セマンティックセグメンテーションは、各画像ピクセルのセマンティックラベルを予測することで構成される。
既存のディープラーニングアプローチは高い精度を達成するが、それらはしばしばクラス間の順序的関係を見落とし、重要なドメイン知識を提供する(例えば、瞳孔は虹彩の中にあり、車線標識は道路の一部)。
本稿では,これらのクラス間の依存関係を明確に組み込んだ空間順序分節法について紹介する。
それぞれの画素を独立観測としてではなく、構造化画像空間の一部として扱うことにより、2つの正規化項と、隣接する画素間の順序整合を強制する新しいメートル法を提案する。
2つの損失正則化項と1つの計量は、非順序の隣接クラスの予測を罰する構造的順序分節化に対して提案される。
5つのバイオメディカルデータセットと複数の自律走行データセットの構成が提案手法の有効性を実証している。
提案手法は,Dice係数の相対的増加を最大15.7%に抑えて,順序数測定の改善と一般化の促進を実現する。
重要なことに、これらの利点は追加の推論時間コストなしで得られます。
この研究は、意味的セグメンテーションにおける空間順序関係の重要性を強調し、構造化画像表現のさらなる探索の基礎を提供する。
関連論文リスト
- Learning Semantic Segmentation with Query Points Supervision on Aerial Images [57.09251327650334]
セマンティックセグメンテーションアルゴリズムを学習するための弱教師付き学習アルゴリズムを提案する。
提案手法は正確なセマンティックセグメンテーションを行い,手作業のアノテーションに要するコストと時間を大幅に削減することで効率を向上する。
論文 参考訳(メタデータ) (2023-09-11T14:32:04Z) - Unsupervised Domain Adaptation for Medical Image Segmentation via
Feature-space Density Matching [0.0]
本稿ではセマンティックセグメンテーションのための教師なしドメイン適応手法を提案する。
対象データ分布を特徴空間のソースとマッチングする。
提案手法の有効性を2つのデータセット,多部位前立腺MRI,病理組織像に示す。
論文 参考訳(メタデータ) (2023-05-09T22:24:46Z) - SePiCo: Semantic-Guided Pixel Contrast for Domain Adaptive Semantic
Segmentation [52.62441404064957]
ドメイン適応セマンティックセグメンテーションは、ラベル付きソースドメインでトレーニングされたモデルを利用することで、ラベル付きターゲットドメイン上で満足のいく密度の予測を試みる。
多くの手法は、ノイズの多い擬似ラベルを緩和する傾向があるが、類似のセマンティックな概念を持つクロスドメインピクセル間の固有の接続を無視する。
本稿では,個々の画素のセマンティックな概念を強調する一段階適応フレームワークSePiCoを提案する。
論文 参考訳(メタデータ) (2022-04-19T11:16:29Z) - Unsupervised Image Segmentation by Mutual Information Maximization and
Adversarial Regularization [7.165364364478119]
InMARS(Information Maximization and Adrial Regularization)と呼ばれる新しい教師なしセマンティックセマンティックセマンティクス手法を提案する。
シーンを知覚群に解析する人間の知覚に触発され、提案手法はまず、入力画像を意味のある領域(スーパーピクセルとも呼ばれる)に分割する。
次に、相互情報最大化(Multual-Information-Maximization)と、それらの領域を意味論的に意味のあるクラスにクラスタ化するための敵対的トレーニング戦略を利用する。
提案手法は2つの非教師付きセマンティックセグメンテーションデータセット上での最先端性能を実現することを実証した。
論文 参考訳(メタデータ) (2021-07-01T18:36:27Z) - Attention-Guided Supervised Contrastive Learning for Semantic
Segmentation [16.729068267453897]
画素ごとの予測タスクでは、セグメンテーションのために1つのイメージに複数のラベルが存在する可能性がある。
本研究では,1つの意味的対象を目標として毎回強調する,注意誘導型教師付きコントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2021-06-03T05:01:11Z) - Semantic Distribution-aware Contrastive Adaptation for Semantic
Segmentation [50.621269117524925]
ドメイン適応セマンティックセグメンテーション(ドメイン適応セマンティックセグメンテーション)とは、特定のソースドメインのアノテーションだけで特定のターゲットドメイン上で予測を行うことを指す。
画素ワイド表示アライメントを可能にする意味分布対応コントラスト適応アルゴリズムを提案する。
複数のベンチマークでSDCAを評価し、既存のアルゴリズムを大幅に改善します。
論文 参考訳(メタデータ) (2021-05-11T13:21:25Z) - Unsupervised Learning of Image Segmentation Based on Differentiable
Feature Clustering [14.074732867392008]
本研究では、教師なし画像分割における畳み込みニューラルネットワーク(CNN)の利用について検討した。
本稿では、正規化と、微分可能なクラスタリングのためのargmax関数からなる、教師なし画像セグメンテーションのエンドツーエンドネットワークを提案する。
第3に,既存の手法よりも精度がよいユーザ入力として,スクリブルを用いたセグメント化手法の拡張を提案する。
論文 参考訳(メタデータ) (2020-07-20T10:28:36Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
2つのニューラルコアテンションを分類器に組み込んで、画像間のセマンティックな類似点と相違点をキャプチャする。
オブジェクトパターン学習の強化に加えて、コアテンションは他の関連する画像からのコンテキストを活用して、ローカライズマップの推論を改善することができる。
提案アルゴリズムは,これらすべての設定に対して新たな最先端性を設定し,その有効性と一般化性を示す。
論文 参考訳(メタデータ) (2020-07-03T21:53:46Z) - Phase Consistent Ecological Domain Adaptation [76.75730500201536]
意味的セグメンテーション(意味的セグメンテーション)の課題に焦点をあてる。そこでは、注釈付き合成データが多用されるが、実際のデータへのアノテートは困難である。
視覚心理学に触発された最初の基準は、2つの画像領域間の地図が位相保存であることである。
第2の基準は、照明剤や撮像センサーの特性に関わらず、その画像に現れる環境統計、またはシーン内の規則を活用することを目的としている。
論文 参考訳(メタデータ) (2020-04-10T06:58:03Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
弱教師付きセマンティックセグメンテーションは、トレーニングのためにピクセル単位のラベル情報が提供されないため、難しい課題である。
このようなペア関係を学習するための反復アルゴリズムを提案する。
本稿では,提案アルゴリズムが最先端手法に対して好適に動作することを示す。
論文 参考訳(メタデータ) (2020-02-19T10:32:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。