Contrasting Deep Learning Models for Direct Respiratory Insufficiency Detection Versus Blood Oxygen Saturation Estimation
- URL: http://arxiv.org/abs/2407.20989v1
- Date: Tue, 30 Jul 2024 17:26:16 GMT
- Title: Contrasting Deep Learning Models for Direct Respiratory Insufficiency Detection Versus Blood Oxygen Saturation Estimation
- Authors: Marcelo Matheus Gauy, Natalia Hitomi Koza, Ricardo Mikio Morita, Gabriel Rocha Stanzione, Arnaldo Candido Junior, Larissa Cristina Berti, Anna Sara Shafferman Levin, Ester Cerdeira Sabino, Flaviane Romani Fernandes Svartman, Marcelo Finger,
- Abstract summary: We study pretrained audio neural networks (CNN6, CNN10 and CNN14) and the Masked Autoencoder (Audio-MAE) for RI detection.
For the regression task of estimating SpO2 levels, the models achieve root mean square error values exceeding the accepted clinical range of 3.5% for finger oximeters.
We transform SpO2-regression into a SpO2-threshold binary classification problem, with a threshold of 92%.
- Score: 1.4149417323913716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We contrast high effectiveness of state of the art deep learning architectures designed for general audio classification tasks, refined for respiratory insufficiency (RI) detection and blood oxygen saturation (SpO2) estimation and classification through automated audio analysis. Recently, multiple deep learning architectures have been proposed to detect RI in COVID patients through audio analysis, achieving accuracy above 95% and F1-score above 0.93. RI is a condition associated with low SpO2 levels, commonly defined as the threshold SpO2 <92%. While SpO2 serves as a crucial determinant of RI, a medical doctor's diagnosis typically relies on multiple factors. These include respiratory frequency, heart rate, SpO2 levels, among others. Here we study pretrained audio neural networks (CNN6, CNN10 and CNN14) and the Masked Autoencoder (Audio-MAE) for RI detection, where these models achieve near perfect accuracy, surpassing previous results. Yet, for the regression task of estimating SpO2 levels, the models achieve root mean square error values exceeding the accepted clinical range of 3.5% for finger oximeters. Additionally, Pearson correlation coefficients fail to surpass 0.3. As deep learning models perform better in classification than regression, we transform SpO2-regression into a SpO2-threshold binary classification problem, with a threshold of 92%. However, this task still yields an F1-score below 0.65. Thus, audio analysis offers valuable insights into a patient's RI status, but does not provide accurate information about actual SpO2 levels, indicating a separation of domains in which voice and speech biomarkers may and may not be useful in medical diagnostics under current technologies.
Related papers
- Thyroidiomics: An Automated Pipeline for Segmentation and Classification of Thyroid Pathologies from Scintigraphy Images [0.23960026858846614]
The objective of this study was to develop an automated pipeline that enhances thyroid disease classification using thyroid scintigraphy images.
Anterior thyroid scintigraphy images from 2,643 patients were collected and categorized into diffuse goiter (DG), multinodal goiter (MNG), and thyroiditis (TH)
The pipeline demonstrated comparable performance to physician segmentations on several classification metrics across different classes.
arXiv Detail & Related papers (2024-07-14T21:29:28Z) - A Federated Learning Framework for Stenosis Detection [70.27581181445329]
This study explores the use of Federated Learning (FL) for stenosis detection in coronary angiography images (CA)
Two heterogeneous datasets from two institutions were considered: dataset 1 includes 1219 images from 200 patients, which we acquired at the Ospedale Riuniti of Ancona (Italy)
dataset 2 includes 7492 sequential images from 90 patients from a previous study available in the literature.
arXiv Detail & Related papers (2023-10-30T11:13:40Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Deep Learning-Based Detection of the Acute Respiratory Distress
Syndrome: What Are the Models Learning? [5.827840113217155]
acute respiratory distress syndrome (ARDS) is a severe form of hypoxemic respiratory failure with in-hospital mortality of 35-46%.
High mortality is thought to be related in part to challenges in making a prompt diagnosis, which may in turn delay implementation of evidence-based therapies.
A deep neural network (DNN) algorithm utilizing unbiased ventilator waveform data (VWD) may help to improve screening for ARDS.
arXiv Detail & Related papers (2021-09-25T09:10:10Z) - Learning to Automatically Diagnose Multiple Diseases in Pediatric Chest
Radiographs Using Deep Convolutional Neural Networks [0.4697611383288171]
Deep convolutional neural networks (D-CNNs) have shown remarkable performance in interpreting chest radiograph (CXR) scans in adults.
In this paper, we retrospectively collect a large dataset of 5,017 pediatric CXR scans, for which each is manually labeled by an experienced radiologist.
A D-CNN model is then trained on 3,550 annotated scans to classify multiple pediatric lung pathologies automatically.
arXiv Detail & Related papers (2021-08-14T08:14:52Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
We propose a novel PCa detection network that incorporates a lesion-level cost-sensitive loss and an additional slice-level loss based on a lesion-to-slice mapping function.
Our experiments based on 290 clinical patients concludes that 1) The lesion-level FNR was effectively reduced from 0.19 to 0.10 and the lesion-level FPR was reduced from 1.03 to 0.66 by changing the lesion-level cost.
arXiv Detail & Related papers (2021-06-04T09:51:27Z) - Intra-Domain Task-Adaptive Transfer Learning to Determine Acute Ischemic
Stroke Onset Time [7.024121839235693]
Treatment of acute ischemic strokes (AIS) is largely contingent upon the time since stroke onset (TSS)
Current clinical guidelines for patients with unknown TSS recommend the use of MRI to determine eligibility for thrombolysis, but radiology assessments have high inter-reader variability.
We present deep learning models that leverage MRI diffusion series to classify TSS based on clinically validated thresholds.
arXiv Detail & Related papers (2020-11-05T18:28:54Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - COVID-Net S: Towards computer-aided severity assessment via training and
validation of deep neural networks for geographic extent and opacity extent
scoring of chest X-rays for SARS-CoV-2 lung disease severity [58.23203766439791]
Chest x-rays (CXRs) are often used to assess SARS-CoV-2 severity.
In this study, we assess the feasibility of computer-aided scoring of CXRs of SARS-CoV-2 lung disease severity using a deep learning system.
arXiv Detail & Related papers (2020-05-26T16:33:52Z) - Deep Neural Network for Respiratory Sound Classification in Wearable
Devices Enabled by Patient Specific Model Tuning [2.8935588665357077]
We propose a deep CNN-RNN model that classifies respiratory sounds based on Mel-spectrograms.
We also implement a patient specific model tuning strategy that first screens respiratory patients and then builds patient specific classification models.
The proposed hybrid CNN-RNN model achieves a score of 66.31% on four-class classification of breathing cycles for ICBHI'17 scientific challenge respiratory sound database.
arXiv Detail & Related papers (2020-04-16T15:42:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.