論文の概要: ThinK: Thinner Key Cache by Query-Driven Pruning
- arxiv url: http://arxiv.org/abs/2407.21018v2
- Date: Thu, 3 Oct 2024 03:03:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 13:51:33.685774
- Title: ThinK: Thinner Key Cache by Query-Driven Pruning
- Title(参考訳): ThinK: クエリ駆動型プルーニングによるより薄いキーキャッシュ
- Authors: Yuhui Xu, Zhanming Jie, Hanze Dong, Lei Wang, Xudong Lu, Aojun Zhou, Amrita Saha, Caiming Xiong, Doyen Sahoo,
- Abstract要約: 大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
- 参考スコア(独自算出の注目度): 63.13363917871414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have revolutionized the field of natural language processing, achieving unprecedented performance across a variety of applications. However, their increased computational and memory demands present significant challenges, especially when handling long sequences. This paper focuses on the long-context scenario, addressing the inefficiencies in KV cache memory consumption during inference. Unlike existing approaches that optimize the memory based on the sequence length, we identify substantial redundancy in the channel dimension of the KV cache, as indicated by an uneven magnitude distribution and a low-rank structure in the attention weights. In response, we propose ThinK, a novel query-dependent KV cache pruning method designed to minimize attention weight loss while selectively pruning the least significant channels. Our approach not only maintains or enhances model accuracy but also achieves a reduction in KV cache memory costs by over 20% compared with vanilla KV cache eviction and quantization methods. For instance, ThinK integrated with KIVI can achieve a 2.8x reduction in peak memory usage while maintaining nearly the same quality, enabling up to a 5x increase in batch size when using a single GPU. Extensive evaluations on the LLaMA and Mistral models across various long-sequence datasets verified the efficiency of ThinK, establishing a new baseline algorithm for efficient LLM deployment without compromising performance.
- Abstract(参考訳): 大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
しかし、計算とメモリの要求が増大し、特に長いシーケンスを扱う場合、大きな課題が浮かび上がっている。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
シーケンス長に基づいてメモリを最適化する既存のアプローチとは異なり,KVキャッシュのチャネル次元におけるかなりの冗長性は,注目重みの均一な分布と低ランク構造によって示される。
そこで本研究では,最小のチャネルを選択的にプルーニングしながら,注目量の減少を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
提案手法は,モデル精度を維持・向上するだけでなく,バニラKVキャッシュ消去法や量子化法と比較して,KVキャッシュメモリコストを20%以上削減する。
例えば、KIVIと統合されたThinKは、ほぼ同じ品質を維持しながらピークメモリ使用量の2.8倍の削減を実現し、単一のGPUを使用する場合のバッチサイズを最大5倍に向上させることができる。
LLaMA と Mistral モデルに対する広範囲な評価により、ThinK の効率が検証され、性能を損なうことなく効率的な LLM デプロイメントのための新しいベースラインアルゴリズムが確立された。
関連論文リスト
- LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - Model Tells You Where to Merge: Adaptive KV Cache Merging for LLMs on Long-Context Tasks [21.815661269986425]
KVMergerと呼ばれる新しいKVキャッシュマージ手法を提案し、長文タスクに対して適応的なKVキャッシュ圧縮を実現する。
我々のアプローチは、キー状態が1つのシーケンス内のトークンレベルで高い類似性を示すという興味深い観察にインスパイアされている。
我々は,制約メモリ予算下での長時間コンテキストタスクに対するKVMergerの有効性を示すため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2024-07-11T12:50:42Z) - MiniCache: KV Cache Compression in Depth Dimension for Large Language Models [48.03117580340151]
キーバリュー(KV)キャッシュは、以前に生成されたトークンのキー値状態を格納する。
KVキャッシュのサイズはシーケンス長とともに線形に増加し、長いコンテキスト入力と広範囲なシーケンス生成を必要とするアプリケーションの課題を提起する。
レイヤ間のKVキャッシュを,新しい奥行きの観点から圧縮する,MiniCacheという,シンプルで効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-23T09:43:52Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
メモリフットプリントを大幅に最小化するKVキャッシュを最適化する革新的な手法を提案する。
KVキャッシュ消去ポリシーであるCORMは、モデル微調整を必要とせずに、推論に必要なキーと値のペアを動的に保持する。
検証の結果,CORMはKVキャッシュの推論メモリ使用量を最大70%削減し,LongBenchの6つのタスクで性能劣化を無視できることがわかった。
論文 参考訳(メタデータ) (2024-04-24T16:11:54Z) - QAQ: Quality Adaptive Quantization for LLM KV Cache [3.163526369095745]
モデルデプロイメントのボトルネックは、コンテキスト長のキーバリューキャッシュの線形拡張によって生じる。
KVキャッシュのための品質適応量子化スキームQAQを提案する。
論文 参考訳(メタデータ) (2024-03-07T16:42:37Z) - Get More with LESS: Synthesizing Recurrence with KV Cache Compression for Efficient LLM Inference [78.65321721142624]
我々はキー値(KV)キャッシュによって課されるメモリボトルネックに焦点を当てる。
既存のKVキャッシュ手法は、比較的重要でないKVペアの大きなスワストを刈り取ったり、取り除いたりすることでこの問題に対処する。
本稿では,固定サイズキャッシュと退避型キャッシュを簡易に統合したLESSを提案する。
論文 参考訳(メタデータ) (2024-02-14T18:54:56Z) - KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [67.9776980972508]
我々はKIVIというチューニング不要な2ビットKVキャッシュ量子化アルゴリズムを開発した。
KIVI は Llama, Falcon, Mistral のモデルを $mathbf2.6times$ less peak memory を使用しながらほぼ同じ品質を維持することができる。
論文 参考訳(メタデータ) (2024-02-05T06:06:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。