論文の概要: XKV: Personalized KV Cache Memory Reduction for Long-Context LLM Inference
- arxiv url: http://arxiv.org/abs/2412.05896v1
- Date: Sun, 08 Dec 2024 11:32:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:58:06.527829
- Title: XKV: Personalized KV Cache Memory Reduction for Long-Context LLM Inference
- Title(参考訳): XKV:長期LLM推論のためのKVキャッシュメモリのパーソナライズ
- Authors: Weizhuo Li, Zhigang Wang, Yu Gu, Ge Yu,
- Abstract要約: 大規模言語モデル(LLM)推論は出力トークンを1つずつ生成し、多くの冗長な計算に繋がる。
KV-Cacheフレームワークは時間と空間の複雑さを妥協する。
既存の研究では、推論精度に重要でないキャッシュデータの一部を削除することで、メモリ消費を減らすことができる。
各レイヤのキャッシュサイズをパーソナライズしてカスタマイズすることで,メモリの大幅な削減が期待できることを示す。
- 参考スコア(独自算出の注目度): 9.65524177141491
- License:
- Abstract: Recently the generative Large Language Model (LLM) has achieved remarkable success in numerous applications. Notably its inference generates output tokens one-by-one, leading to many redundant computations. The widely-used KV-Cache framework makes a compromise between time and space complexities. However, caching data generates the increasingly growing memory demand, that can quickly exhaust the limited memory capacity of the modern accelerator like GPUs, particularly in long-context inference tasks. Existing studies reduce memory consumption by evicting some of cached data that have less important impact on inference accuracy. But the benefit in practice is far from ideal due to the static cache allocation across different LLM network layers. This paper observes that the layer-specific cached data have very different impacts on accuracy. We quantify this difference, and give experimental and theoretical validation. We accordingly make a formal analysis and shows that customizing the cache size for each layer in a personalized manner can yield a significant memory reduction, while still providing comparable accuracy. We simulate the cache allocation as a combinatorial optimization problem and give a global optimal solution. In particular, we devise a mini- and sampling-based inference over a lightweight variant of the LLM model, so as to quickly capture the difference and then feed it into the personalized algorithms. Extensive experiments on real-world datasets demonstrate that our proposals can reduce KV cache memory consumption by 61.6% on average, improve computational efficiency by 2.1x and then increase the throughput by up to 5.5x.
- Abstract(参考訳): 近年,ジェネレーティブなLarge Language Model (LLM) が多くのアプリケーションで大きな成功を収めている。
特に、その推論は出力トークンを1つずつ生成し、多くの冗長な計算に繋がる。
広く使われているKV-Cacheフレームワークは、時間と空間の複雑さを妥協させる。
しかし、キャッシングデータによってメモリ需要が増大し、特に長期コンテキスト推論タスクにおいて、GPUのような現代のアクセラレータの限られたメモリ容量がすぐに枯渇する可能性がある。
既存の研究では、推論精度に重要でないキャッシュデータの一部を削除することで、メモリ消費を減らすことができる。
しかし、様々なLLMネットワーク層にまたがる静的キャッシュ割り当てのため、現実の利点は理想的ではない。
本稿では,レイヤ固有のキャッシュデータが精度に非常に異なる影響を与えることを観察する。
この差を定量化し、実験的、理論的に検証する。
したがって、我々は形式的な分析を行い、各レイヤのキャッシュサイズをパーソナライズした方法でカスタマイズすることで、メモリの大幅な削減が可能でありながら、同等の精度を提供することを示す。
キャッシュ割り当てを組合せ最適化問題としてシミュレートし,大域的最適解を与える。
特に,LLMモデルの軽量な変種に対する最小およびサンプリングに基づく推論を考案し,その差を素早く捉え,パーソナライズされたアルゴリズムにフィードバックする。
実世界のデータセットに対する大規模な実験により、提案手法はKVキャッシュのメモリ消費を平均61.6%削減し、計算効率を2.1倍改善し、スループットを最大5.5倍向上させることができる。
関連論文リスト
- InstCache: A Predictive Cache for LLM Serving [9.878166964839512]
本稿では,命令整合 LLM によるユーザインストラクションの予測と,それを予測キャッシュ,いわゆる InstCache に格納することを提案する。
実験の結果、InstCacheはLMSysデータセット上で最大51.34%のヒット率を達成でき、メモリコストは4.5GBに過ぎなかった。
論文 参考訳(メタデータ) (2024-11-21T03:52:41Z) - VL-Cache: Sparsity and Modality-Aware KV Cache Compression for Vision-Language Model Inference Acceleration [7.463830743649754]
VLM(Vision-Language Models)は、多目的なタスクセットにまたがる印象的なパフォーマンスを実証している。
キーバリュー(KV)キャッシュは、画像やビデオなどの長い視覚的コンテキストをエンコードする。
既存のKVキャッシュ圧縮手法は大規模言語モデル(LLM)に有効である
VLM推論の高速化に適した新しいKVキャッシュ圧縮レシピを提案する。
論文 参考訳(メタデータ) (2024-10-29T20:04:34Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - Efficient Inference of Vision Instruction-Following Models with Elastic Cache [76.44955111634545]
我々は,命令追従型大規模視覚言語モデルの効率的なデプロイのための新しい戦略であるElastic Cacheを紹介する。
本稿では,冗長キャッシュを具現化する重要なキャッシュマージ戦略を提案する。
命令符号化では,キャッシュの重要性を評価するために周波数を利用する。
様々なLVLMの結果は、Elastic Cacheが効率を向上するだけでなく、言語生成における既存のプルーニングメソッドよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-25T15:29:05Z) - MiniCache: KV Cache Compression in Depth Dimension for Large Language Models [48.03117580340151]
キーバリュー(KV)キャッシュは、以前に生成されたトークンのキー値状態を格納する。
KVキャッシュのサイズはシーケンス長とともに線形に増加し、長いコンテキスト入力と広範囲なシーケンス生成を必要とするアプリケーションの課題を提起する。
レイヤ間のKVキャッシュを,新しい奥行きの観点から圧縮する,MiniCacheという,シンプルで効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-23T09:43:52Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
メモリフットプリントを大幅に最小化するKVキャッシュを最適化する革新的な手法を提案する。
KVキャッシュ消去ポリシーであるCORMは、モデル微調整を必要とせずに、推論に必要なキーと値のペアを動的に保持する。
検証の結果,CORMはKVキャッシュの推論メモリ使用量を最大70%削減し,LongBenchの6つのタスクで性能劣化を無視できることがわかった。
論文 参考訳(メタデータ) (2024-04-24T16:11:54Z) - Get More with LESS: Synthesizing Recurrence with KV Cache Compression for Efficient LLM Inference [78.65321721142624]
我々はキー値(KV)キャッシュによって課されるメモリボトルネックに焦点を当てる。
既存のKVキャッシュ手法は、比較的重要でないKVペアの大きなスワストを刈り取ったり、取り除いたりすることでこの問題に対処する。
本稿では,固定サイズキャッシュと退避型キャッシュを簡易に統合したLESSを提案する。
論文 参考訳(メタデータ) (2024-02-14T18:54:56Z) - KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [67.9776980972508]
我々はKIVIというチューニング不要な2ビットKVキャッシュ量子化アルゴリズムを開発した。
KIVI は Llama, Falcon, Mistral のモデルを $mathbf2.6times$ less peak memory を使用しながらほぼ同じ品質を維持することができる。
論文 参考訳(メタデータ) (2024-02-05T06:06:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。