論文の概要: Table-Filling via Mean Teacher for Cross-domain Aspect Sentiment Triplet Extraction
- arxiv url: http://arxiv.org/abs/2407.21052v1
- Date: Tue, 23 Jul 2024 09:04:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 19:28:03.107129
- Title: Table-Filling via Mean Teacher for Cross-domain Aspect Sentiment Triplet Extraction
- Title(参考訳): ドメイン横断型感性トリプレット抽出のための平均教師によるテーブルフィリング
- Authors: Kun Peng, Lei Jiang, Qian Li, Haoran Li, Xiaoyan Yu, Li Sun, Shuo Sun, Yanxian Bi, Hao Peng,
- Abstract要約: クロスドメイン・アスペクト・インスペクティブ・トリプレット抽出(ASTE)は、対象のドメイン文からきめ細かい感情要素を抽出することを目的としている。
textbfMean textbfTeacher (TFMT) を用いた textbfTable-textbfFilling という新しい手法を提案する。
提案手法は,最小パラメータと計算コストで最先端性能を実現する。
- 参考スコア(独自算出の注目度): 30.2200481149647
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-domain Aspect Sentiment Triplet Extraction (ASTE) aims to extract fine-grained sentiment elements from target domain sentences by leveraging the knowledge acquired from the source domain. Due to the absence of labeled data in the target domain, recent studies tend to rely on pre-trained language models to generate large amounts of synthetic data for training purposes. However, these approaches entail additional computational costs associated with the generation process. Different from them, we discover a striking resemblance between table-filling methods in ASTE and two-stage Object Detection (OD) in computer vision, which inspires us to revisit the cross-domain ASTE task and approach it from an OD standpoint. This allows the model to benefit from the OD extraction paradigm and region-level alignment. Building upon this premise, we propose a novel method named \textbf{T}able-\textbf{F}illing via \textbf{M}ean \textbf{T}eacher (TFMT). Specifically, the table-filling methods encode the sentence into a 2D table to detect word relations, while TFMT treats the table as a feature map and utilizes a region consistency to enhance the quality of those generated pseudo labels. Additionally, considering the existence of the domain gap, a cross-domain consistency based on Maximum Mean Discrepancy is designed to alleviate domain shift problems. Our method achieves state-of-the-art performance with minimal parameters and computational costs, making it a strong baseline for cross-domain ASTE.
- Abstract(参考訳): クロスドメイン・アスペクト・センチメント・トリプレット抽出(ASTE)は、ソースドメインから取得した知識を活用して、ターゲットドメイン文からきめ細かい感情要素を抽出することを目的としている。
対象領域にラベル付きデータがないため、最近の研究では、トレーニング目的のために大量の合成データを生成するために、事前訓練された言語モデルに依存する傾向にある。
しかし、これらの手法は生成プロセスに関連する追加の計算コストを必要とする。
これらと異なり、ASTEにおけるテーブル充填法とコンピュータビジョンにおける2段階オブジェクト検出(OD)との間に顕著な類似点が発見され、ドメイン間ASTEタスクを再検討し、ODの観点からアプローチするよう促される。
これにより、OD抽出パラダイムとリージョンレベルのアライメントの恩恵を受けることができる。
この前提に基づいて, TFMT (textbf{T}able-\textbf{F}illing via \textbf{M}ean \textbf{T}eacher) という新しい手法を提案する。
具体的には、単語関係を検出するために2Dテーブルに文をエンコードし、TFMTは特徴マップとしてテーブルを扱い、領域の一貫性を利用して生成された擬似ラベルの品質を向上させる。
さらに、ドメインギャップの存在を考慮すると、最大平均離散度に基づくドメイン間の整合性は、ドメインシフト問題を緩和するために設計されている。
提案手法は,最小パラメータと計算コストで最先端性能を実現し,クロスドメインASTEの強力なベースラインとなる。
関連論文リスト
- Bidirectional Generative Framework for Cross-domain Aspect-based
Sentiment Analysis [68.742820522137]
クロスドメインアスペクトベースの感情分析(ABSA)は、ソースドメインから知識を伝達することで、ターゲットドメイン上で様々なきめ細かい感情分析タスクを実行することを目的としている。
本稿では,多様なドメイン間ABSAタスクに対処するための統合双方向生成フレームワークを提案する。
我々のフレームワークは、テキストからラベルまでの方向とラベルからテキストへの方向の両方で生成モデルを訓練する。
論文 参考訳(メタデータ) (2023-05-16T15:02:23Z) - A Two-Stage Framework with Self-Supervised Distillation For Cross-Domain Text Classification [46.47734465505251]
クロスドメインテキスト分類は、ラベル付きデータを持たないターゲットドメインにモデルを適応させることを目的としている。
クロスドメインテキスト分類のための2段階フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-18T06:21:40Z) - Syntax-Guided Domain Adaptation for Aspect-based Sentiment Analysis [23.883810236153757]
ドメイン適応は、ドメイン間で共通の知識を伝達することによって、新しいドメインにおけるデータ不足問題を緩和するための一般的なソリューションである。
より効果的なクロスドメインABSAのための、SDAMと呼ばれる新しい構文誘導型ドメイン適応モデルを提案する。
我々のモデルは、クロスドメインEnd2EndABSAタスクのMicro-F1メトリックに関して、最先端のベースラインを一貫して上回ります。
論文 参考訳(メタデータ) (2022-11-10T10:09:33Z) - Multi-Modal Cross-Domain Alignment Network for Video Moment Retrieval [55.122020263319634]
ビデオモーメント検索(VMR)は、与えられた言語クエリに従って、未編集のビデオからターゲットモーメントをローカライズすることを目的としている。
本稿では、新しいタスクであるクロスドメインVMRに焦点を当て、完全なアノテーション付きデータセットをひとつのドメインで利用できるが、関心のあるドメインは、注釈なしのデータセットのみを含む。
本稿では、アノテーションの知識をソースドメインからターゲットドメインに転送するマルチモーダル・クロスドメインアライメント・ネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-23T12:58:20Z) - Low-confidence Samples Matter for Domain Adaptation [47.552605279925736]
ドメイン適応(DA)は、知識をラベルの豊富なソースドメインから関連するがラベルの少ないターゲットドメインに転送することを目的としている。
低信頼度サンプルの処理による新しいコントラスト学習法を提案する。
提案手法を教師なしと半教師付きの両方のDA設定で評価する。
論文 参考訳(メタデータ) (2022-02-06T15:45:45Z) - A cross-domain recommender system using deep coupled autoencoders [77.86290991564829]
クロスドメインレコメンデーションのために2つの新しい結合型オートエンコーダに基づくディープラーニング手法を提案する。
最初の方法は、ソースドメインとターゲットドメイン内のアイテムの固有表現を明らかにするために、一対のオートエンコーダを同時に学習することを目的としている。
第2の方法は,2つのオートエンコーダを用いてユーザとアイテム待ち行列を深く非線形に生成する,新たな共同正規化最適化問題に基づいて導出する。
論文 参考訳(メタデータ) (2021-12-08T15:14:26Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA)は、ラベル付きデータが利用できないターゲットドメインでモデルを学習する問題を指す。
本稿では,視覚データセット中の潜在ドメインを自動的に発見することにより,udaの問題に対処する新しい深層アーキテクチャを提案する。
提案手法を公開ベンチマークで評価し,最先端のドメイン適応手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-03-25T14:33:33Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
部分的なドメイン適応は、より大きく多様なソースドメインからの知識を、より少ないクラス数でより小さなターゲットドメインに適応させることを目的としています。
ドメイン適応の最近の実践は、ターゲットドメインの擬似ラベルを組み込むことで、効果的な特徴を抽出する。
ターゲットデータを少数のソースデータのみにアライメントすることが不可欠である。
論文 参考訳(メタデータ) (2020-08-26T03:18:53Z) - Simultaneous Semantic Alignment Network for Heterogeneous Domain
Adaptation [67.37606333193357]
本稿では,カテゴリ間の相関を同時に利用し,各カテゴリ毎のセントロイドを整列させるために,aSimultaneous Semantic Alignment Network (SSAN)を提案する。
対象の擬似ラベルを利用することで、各カテゴリの特徴表現を整列させるために、ロバストな三重項中心のアライメント機構を明示的に適用する。
テキスト・ツー・イメージ、画像・画像・テキスト・ツー・テキストにわたる様々なHDAタスクの実験は、最先端のHDA手法に対するSSANの優位性を検証することに成功した。
論文 参考訳(メタデータ) (2020-08-04T16:20:37Z) - Coupling Distant Annotation and Adversarial Training for Cross-Domain
Chinese Word Segmentation [40.27961925319402]
本論文は,中国語の単語セグメント化のための遠隔アノテーションと逆行訓練を併用することを提案する。
遠隔アノテーションのために、ターゲットドメインからの監視や事前定義された辞書を必要としない自動遠隔アノテーション機構を設計する。
逆行訓練では、音源領域情報の雑音低減と最大限の活用を行うための文レベルの訓練手法を開発する。
論文 参考訳(メタデータ) (2020-07-16T08:54:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。