Knowledge Models for Cancer Clinical Practice Guidelines : Construction, Management and Usage in Question Answering
- URL: http://arxiv.org/abs/2407.21053v1
- Date: Tue, 23 Jul 2024 11:26:40 GMT
- Title: Knowledge Models for Cancer Clinical Practice Guidelines : Construction, Management and Usage in Question Answering
- Authors: Pralaypati Ta, Bhumika Gupta, Arihant Jain, Sneha Sree C, Keerthi Ram, Mohanasankar Sivaprakasam,
- Abstract summary: This work proposes an improved automated knowledge modeling algorithm to create knowledge models from Cancer Practice Guidelines (CPGs)
We created a question-answering (Q&A) framework with the guideline knowledge models as augmented knowledge base to study our ability to query the knowledge models.
The framework was evaluated against the question-answer pairs from one data source, and it can generate the answers with 54.5% accuracy from the treatment algorithm and 81.8% accuracy from the discussion part of the NCCN NSCLC guideline knowledge model.
- Score: 1.8637078358591848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An automated knowledge modeling algorithm for Cancer Clinical Practice Guidelines (CPGs) extracts the knowledge contained in the CPG documents and transforms it into a programmatically interactable, easy-to-update structured model with minimal human intervention. The existing automated algorithms have minimal scope and cannot handle the varying complexity of the knowledge content in the CPGs for different cancer types. This work proposes an improved automated knowledge modeling algorithm to create knowledge models from the National Comprehensive Cancer Network (NCCN) CPGs in Oncology for different cancer types. The proposed algorithm has been evaluated with NCCN CPGs for four different cancer types. We also proposed an algorithm to compare the knowledge models for different versions of a guideline to discover the specific changes introduced in the treatment protocol of a new version. We created a question-answering (Q&A) framework with the guideline knowledge models as the augmented knowledge base to study our ability to query the knowledge models. We compiled a set of 32 question-answer pairs derived from two reliable data sources for the treatment of Non-Small Cell Lung Cancer (NSCLC) to evaluate the Q&A framework. The framework was evaluated against the question-answer pairs from one data source, and it can generate the answers with 54.5% accuracy from the treatment algorithm and 81.8% accuracy from the discussion part of the NCCN NSCLC guideline knowledge model.
Related papers
- Uncovering Knowledge Gaps in Radiology Report Generation Models through Knowledge Graphs [18.025481751074214]
We introduce a system, named ReXKG, which extracts structured information from processed reports to construct a radiology knowledge graph.
We conduct an in-depth comparative analysis of AI-generated and human-written radiology reports, assessing the performance of both specialist and generalist models.
arXiv Detail & Related papers (2024-08-26T16:28:56Z) - A novel method to compute the contact surface area between an organ and cancer tissue [81.84413479369512]
"contact surface area" (CSA) refers to the area of contact between a tumor and an organ.
We introduce an innovative method that relies on 3D reconstructions of tumors and organs to provide an accurate and objective estimate of the CSA.
arXiv Detail & Related papers (2024-01-19T14:34:34Z) - Automated Knowledge Modeling for Cancer Clinical Practice Guidelines [1.1083289076967895]
Clinical Practice Guidelines (CPGs) for cancer diseases evolve rapidly due to new evidence generated by active research.
Currently, CPGs are primarily published in a document format that is ill-suited for managing this developing knowledge.
This work proposes an automated method for extraction of knowledge from NCCN CPGs in Oncology.
arXiv Detail & Related papers (2023-07-15T18:07:08Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Gene selection from microarray expression data: A Multi-objective PSO
with adaptive K-nearest neighborhood [0.0]
This paper deals with the classification problem of human cancer diseases by using gene expression data.
It is presented a new methodology to analyze microarray datasets and efficiently classify cancer diseases.
arXiv Detail & Related papers (2022-05-27T04:22:10Z) - Open-Set Recognition of Breast Cancer Treatments [91.3247063132127]
Open-set recognition generalizes a classification task by classifying test samples as one of the known classes from training or "unknown"
We apply a recent existing Gaussian mixture variational autoencoder model, which achieves state-of-the-art results for image datasets, to breast cancer patient data.
Not only do we obtain more accurate and robust classification results, with a 24.5% average F1 increase compared to a recent method, but we also reexamine open-set recognition in terms of deployability to a clinical setting.
arXiv Detail & Related papers (2022-01-09T04:35:55Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - NuCLS: A scalable crowdsourcing, deep learning approach and dataset for
nucleus classification, localization and segmentation [0.0]
Deep learning algorithms can provide accurate mappings given large numbers of labeled instances for training and validation.
generating adequate volume of quality labels has emerged as a critical barrier in computational pathology.
We show how suggested annotations generated by a weak algorithm can improve the accuracy of annotations generated by non-experts.
arXiv Detail & Related papers (2021-02-18T01:17:17Z) - Hierarchical Deep Learning Classification of Unstructured Pathology
Reports to Automate ICD-O Morphology Grading [0.0]
We present a hierarchical deep learning classification method that employs convolutional neural network models to automate the classification of 1813 breast cancer pathology reports.
We demonstrate that the hierarchical deep learning classification method improves on performance in comparison to a flat multiclass CNN model for ICD-O morphology classification of the same reports.
arXiv Detail & Related papers (2020-08-28T12:36:58Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.