Comprehensive Modeling and Question Answering of Cancer Clinical Practice Guidelines using LLMs
- URL: http://arxiv.org/abs/2501.13984v1
- Date: Thu, 23 Jan 2025 07:06:26 GMT
- Title: Comprehensive Modeling and Question Answering of Cancer Clinical Practice Guidelines using LLMs
- Authors: Bhumika Gupta, Pralaypati Ta, Keerthi Ram, Mohanasankar Sivaprakasam,
- Abstract summary: This work proposes an approach to create a contextually enriched digital representation of National Comprehensive Cancer Network (NCCN) Cancer guidelines.
We implement semantic enrichment of the model by using Large Language Models (LLMs) for node classification.
We also introduce a methodology for answering natural language questions with constraints to guideline text.
- Score: 0.6187270874122919
- License:
- Abstract: The updated recommendations on diagnostic procedures and treatment pathways for a medical condition are documented as graphical flows in Clinical Practice Guidelines (CPGs). For effective use of the CPGs in helping medical professionals in the treatment decision process, it is necessary to fully capture the guideline knowledge, particularly the contexts and their relationships in the graph. While several existing works have utilized these guidelines to create rule bases for Clinical Decision Support Systems, limited work has been done toward directly capturing the full medical knowledge contained in CPGs. This work proposes an approach to create a contextually enriched, faithful digital representation of National Comprehensive Cancer Network (NCCN) Cancer CPGs in the form of graphs using automated extraction and node & relationship classification. We also implement semantic enrichment of the model by using Large Language Models (LLMs) for node classification, achieving an accuracy of 80.86% and 88.47% with zero-shot learning and few-shot learning, respectively. Additionally, we introduce a methodology for answering natural language questions with constraints to guideline text by leveraging LLMs to extract the relevant subgraph from the guideline knowledge base. By generating natural language answers based on subgraph paths and semantic information, we mitigate the risk of incorrect answers and hallucination associated with LLMs, ensuring factual accuracy in medical domain Question Answering.
Related papers
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - Knowledge-Infused Prompting: Assessing and Advancing Clinical Text Data Generation with Large Language Models [46.32860360019374]
Large language models (LLMs) have shown promise in this domain, but their direct deployment can lead to privacy issues.
We propose an innovative, resource-efficient approach, ClinGen, which infuses knowledge into the process.
Our empirical study across 7 clinical NLP tasks and 16 datasets reveals that ClinGen consistently enhances performance across various tasks.
arXiv Detail & Related papers (2023-11-01T04:37:28Z) - Leveraging A Medical Knowledge Graph into Large Language Models for
Diagnosis Prediction [7.5569033426158585]
We propose an innovative approach for augmenting the proficiency of Large Language Models (LLMs) in automated diagnosis generation.
We derive the KG from the National Library of Medicine's Unified Medical Language System (UMLS), a robust repository of biomedical knowledge.
Our approach offers an explainable diagnostic pathway, edging us closer to the realization of AI-augmented diagnostic decision support systems.
arXiv Detail & Related papers (2023-08-28T06:05:18Z) - Automated Knowledge Modeling for Cancer Clinical Practice Guidelines [1.1083289076967895]
Clinical Practice Guidelines (CPGs) for cancer diseases evolve rapidly due to new evidence generated by active research.
Currently, CPGs are primarily published in a document format that is ill-suited for managing this developing knowledge.
This work proposes an automated method for extraction of knowledge from NCCN CPGs in Oncology.
arXiv Detail & Related papers (2023-07-15T18:07:08Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine [68.7814360102644]
We propose the Re$3$Writer method with retrieval-augmented generation and knowledge-grounded reasoning.
We demonstrate the effectiveness of our method in generating patient discharge instructions.
arXiv Detail & Related papers (2022-10-23T16:34:39Z) - Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [116.87918100031153]
We propose a Cross-modal clinical Graph Transformer (CGT) for ophthalmic report generation (ORG)
CGT injects clinical relation triples into the visual features as prior knowledge to drive the decoding procedure.
Experiments on the large-scale FFA-IR benchmark demonstrate that the proposed CGT is able to outperform previous benchmark methods.
arXiv Detail & Related papers (2022-06-04T13:16:30Z) - HealthPrompt: A Zero-shot Learning Paradigm for Clinical Natural
Language Processing [3.762895631262445]
We developed a novel prompt-based clinical NLP framework called HealthPrompt.
We performed an in-depth analysis of HealthPrompt on six different PLMs in a no-data setting.
Our experiments prove that prompts effectively capture the context of clinical texts and perform remarkably well without any training data.
arXiv Detail & Related papers (2022-03-09T21:44:28Z) - AI Driven Knowledge Extraction from Clinical Practice Guidelines:
Turning Research into Practice [2.803896166632835]
Clinical Practice Guidelines (CPGs) represent the foremost methodology for sharing state-of-the-art research findings in the healthcare domain with medical practitioners.
However, extracting relevant knowledge from the plethora of CPGs is not feasible for already burdened healthcare professionals.
This research presents a novel methodology for knowledge extraction from CPGs to reduce the gap and turn the latest research findings into clinical practice.
arXiv Detail & Related papers (2020-12-10T07:23:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.