High-Dimensional Fault Tolerance Testing of Highly Automated Vehicles Based on Low-Rank Models
- URL: http://arxiv.org/abs/2407.21069v1
- Date: Sun, 28 Jul 2024 14:27:13 GMT
- Title: High-Dimensional Fault Tolerance Testing of Highly Automated Vehicles Based on Low-Rank Models
- Authors: Yuewen Mei, Tong Nie, Jian Sun, Ye Tian,
- Abstract summary: Fault Injection (FI) testing is conducted to evaluate the safety level of HAVs.
To fully cover test cases, various driving scenarios and fault settings should be considered.
We propose to accelerate FI testing under the low-rank Smoothness Regularized Matrix Factorization framework.
- Score: 39.139025989575686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring fault tolerance of Highly Automated Vehicles (HAVs) is crucial for their safety due to the presence of potentially severe faults. Hence, Fault Injection (FI) testing is conducted by practitioners to evaluate the safety level of HAVs. To fully cover test cases, various driving scenarios and fault settings should be considered. However, due to numerous combinations of test scenarios and fault settings, the testing space can be complex and high-dimensional. In addition, evaluating performance in all newly added scenarios is resource-consuming. The rarity of critical faults that can cause security problems further strengthens the challenge. To address these challenges, we propose to accelerate FI testing under the low-rank Smoothness Regularized Matrix Factorization (SRMF) framework. We first organize the sparse evaluated data into a structured matrix based on its safety values. Then the untested values are estimated by the correlation captured by the matrix structure. To address high dimensionality, a low-rank constraint is imposed on the testing space. To exploit the relationships between existing scenarios and new scenarios and capture the local regularity of critical faults, three types of smoothness regularization are further designed as a complement. We conduct experiments on car following and cut in scenarios. The results indicate that SRMF has the lowest prediction error in various scenarios and is capable of predicting rare critical faults compared to other machine learning models. In addition, SRMF can achieve 1171 acceleration rate, 99.3% precision and 91.1% F1 score in identifying critical faults. To the best of our knowledge, this is the first work to introduce low-rank models to FI testing of HAVs.
Related papers
- Reshaping the Online Data Buffering and Organizing Mechanism for Continual Test-Time Adaptation [49.53202761595912]
Continual Test-Time Adaptation involves adapting a pre-trained source model to continually changing unsupervised target domains.
We analyze the challenges of this task: online environment, unsupervised nature, and the risks of error accumulation and catastrophic forgetting.
We propose an uncertainty-aware buffering approach to identify and aggregate significant samples with high certainty from the unsupervised, single-pass data stream.
arXiv Detail & Related papers (2024-07-12T15:48:40Z) - Few-Shot Scenario Testing for Autonomous Vehicles Based on Neighborhood Coverage and Similarity [8.97909097472183]
Testing and evaluating safety performance of autonomous vehicles (AVs) is essential before the large-scale deployment.
The number of testing scenarios permissible for a specific AV is severely limited by tight constraints on testing budgets and time.
We formulate this problem for the first time the "few-shot testing" (FST) problem and propose a systematic framework to address this challenge.
arXiv Detail & Related papers (2024-02-02T04:47:14Z) - Diversity-guided Search Exploration for Self-driving Cars Test
Generation through Frenet Space Encoding [4.135985106933988]
The rise of self-driving cars (SDCs) presents important safety challenges to address in dynamic environments.
While field testing is essential, current methods lack diversity in assessing critical SDC scenarios.
We show that the likelihood of leading to an out-of-bound condition can be learned by the deep-learning vanilla transformer model.
arXiv Detail & Related papers (2024-01-26T06:57:00Z) - STEAM & MoSAFE: SOTIF Error-and-Failure Model & Analysis for AI-Enabled
Driving Automation [4.820785104084241]
This paper defines the SOTIF Temporal Error and Failure Model (STEAM) as a refinement of the SOTIF cause-and-effect model.
Second, this paper proposes the Model-based SOTIF Analysis of Failures and Errors (MoSAFE) method, which allows instantiating STEAM based on system-design models.
arXiv Detail & Related papers (2023-12-15T06:34:35Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT, Automated Safety Scenario Red Teaming, consists of three methods -- semantically aligned augmentation, target bootstrapping, and adversarial knowledge injection.
We partition our prompts into four safety domains for a fine-grained analysis of how the domain affects model performance.
We find statistically significant performance differences of up to 11% in absolute classification accuracy among semantically related scenarios and error rates of up to 19% absolute error in zero-shot adversarial settings.
arXiv Detail & Related papers (2023-10-14T17:10:28Z) - Conservative Prediction via Data-Driven Confidence Minimization [70.93946578046003]
In safety-critical applications of machine learning, it is often desirable for a model to be conservative.
We propose the Data-Driven Confidence Minimization framework, which minimizes confidence on an uncertainty dataset.
arXiv Detail & Related papers (2023-06-08T07:05:36Z) - Identifying and Explaining Safety-critical Scenarios for Autonomous
Vehicles via Key Features [5.634825161148484]
This paper uses Instance Space Analysis (ISA) to identify the significant features of test scenarios that affect their ability to reveal the unsafe behaviour of AVs.
ISA identifies the features that best differentiate safety-critical scenarios from normal driving and visualises the impact of these features on test scenario outcomes (safe/unsafe) in 2D.
To test the predictive ability of the identified features, we train five Machine Learning classifiers to classify test scenarios as safe or unsafe.
arXiv Detail & Related papers (2022-12-15T00:52:47Z) - Uncertainty-Driven Action Quality Assessment [67.20617610820857]
We propose a novel probabilistic model, named Uncertainty-Driven AQA (UD-AQA), to capture the diversity among multiple judge scores.
We generate the estimation of uncertainty for each prediction, which is employed to re-weight AQA regression loss.
Our proposed method achieves competitive results on three benchmarks including the Olympic events MTL-AQA and FineDiving, and the surgical skill JIGSAWS datasets.
arXiv Detail & Related papers (2022-07-29T07:21:15Z) - Fast and Accurate Error Simulation for CNNs against Soft Errors [64.54260986994163]
We present a framework for the reliability analysis of Conal Neural Networks (CNNs) via an error simulation engine.
These error models are defined based on the corruption patterns of the output of the CNN operators induced by faults.
We show that our methodology achieves about 99% accuracy of the fault effects w.r.t. SASSIFI, and a speedup ranging from 44x up to 63x w.r.t.FI, that only implements a limited set of error models.
arXiv Detail & Related papers (2022-06-04T19:45:02Z) - Efficient statistical validation with edge cases to evaluate Highly
Automated Vehicles [6.198523595657983]
The widescale deployment of Autonomous Vehicles seems to be imminent despite many safety challenges that are yet to be resolved.
Existing standards focus on deterministic processes where the validation requires only a set of test cases that cover the requirements.
This paper presents a new approach to compute the statistical characteristics of a system's behaviour by biasing automatically generated test cases towards the worst case scenarios.
arXiv Detail & Related papers (2020-03-04T04:35:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.