論文の概要: Palu: Compressing KV-Cache with Low-Rank Projection
- arxiv url: http://arxiv.org/abs/2407.21118v1
- Date: Tue, 30 Jul 2024 18:19:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 19:35:32.237266
- Title: Palu: Compressing KV-Cache with Low-Rank Projection
- Title(参考訳): Palu: 低ランクプロジェクションでKVキャッシュを圧縮する
- Authors: Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang, Ning-Chi Huang, Luis Ceze, Kai-Chiang Wu,
- Abstract要約: Paluは、低ランクプロジェクションを利用する新しいKVキャッシュ圧縮フレームワークである。
Paluは線形層を低ランクの行列に分解し、小さな中間状態をキャッシュし、フルキーと値をオンザフライで再構築する。
実験の結果,Palu は KV-Cache を91.25% 以上圧縮でき,精度は大幅に向上した。
- 参考スコア(独自算出の注目度): 4.84513186091694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: KV-Cache compression methods generally sample a KV-Cache of effectual tokens or quantize it into lower bits. However, these methods cannot exploit the redundancy of the hidden dimension of KV tensors. This paper investigates a unique hidden dimension approach called Palu, a novel KV-Cache compression framework that utilizes low-rank projection. Palu decomposes the linear layers into low-rank matrices, caches the smaller intermediate states, and reconstructs the full keys and values on the fly. To improve accuracy, compression rate, and efficiency, Palu further encompasses (1) a medium-grained low-rank decomposition scheme, (2) an efficient rank search algorithm, (3) a low-rank-aware quantization algorithm, and (4) matrix fusion with optimized GPU kernels. Our extensive experiments with popular LLMs show that Palu can compress KV-Cache by more than 91.25% while maintaining a significantly better accuracy (up to 1.19 lower perplexity) than state-of-the-art KV-Cache quantization methods at a similar or even higher memory usage. When compressing KV-Cache for 50%, Palu delivers up to 1.61x end-to-end speedup for the attention module. Our code is publicly available at https://github.com/shadowpa0327/Palu.
- Abstract(参考訳): KVキャッシュ圧縮法は一般的に、実効トークンのKVキャッシュをサンプリングするか、より低いビットに量子化する。
しかし、これらの手法はKVテンソルの隠れ次元の冗長性を利用することはできない。
本稿では,低ランクプロジェクションを利用した新しいKVキャッシュ圧縮フレームワークPaluについて検討する。
Paluは線形層を低ランクの行列に分解し、小さな中間状態をキャッシュし、フルキーと値をオンザフライで再構築する。
精度、圧縮速度、効率を向上させるため、Paluはさらに(1)中粒度低ランク分解方式、(2)効率的なランク探索アルゴリズム、(3)低ランク対応量子化アルゴリズム、(4)最適化GPUカーネルによるマトリックス融合を含む。
一般的なLCMを用いた大規模な実験により、Palu は KV-Cache を91.25% 以上圧縮できる一方で、最先端の KV-Cache 量子化手法よりもはるかに高い精度(最大 1.19 低いパープレキシティ)を、同じまたはそれ以上のメモリ使用量で維持できることが示された。
KVキャッシュを50%圧縮すると、Paluはアテンションモジュールのエンドツーエンドのスピードアップを最大1.61倍に向上させる。
私たちのコードはhttps://github.com/shadowpa0327/Palu.comで公開されています。
関連論文リスト
- KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
我々は,層間をKVキャッシュで共有し,層間圧縮を実現する,textit KVSharerと呼ばれるプラグアンドプレイ方式を提案する。
実験の結果、textit KVSharerはKVキャッシュの計算を30%削減し、メモリ消費を削減できることがわかった。
我々は,textit KVSharerが既存の層内KVキャッシュ圧縮手法と互換性があることを検証する。
論文 参考訳(メタデータ) (2024-10-24T08:06:41Z) - MatryoshkaKV: Adaptive KV Compression via Trainable Orthogonal Projection [14.073722038551125]
KVキャッシュは、大規模言語モデルの推論におけるデファクト技術となっている。
本稿では,低ランクな投影行列を用いて,キャッシュ特性を次元を小さくした空間に変換する。
提案手法は, 平均KVキャッシュ圧縮率60%で90%以上の性能を維持することができる。
論文 参考訳(メタデータ) (2024-10-16T08:34:51Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling [53.08975547824068]
本研究では,大規模言語モデル(LLM)内の注意に基づく情報フローが,長期的文脈処理のための顕著なパターンによって集約されるかどうかを検討する。
観測の結果,LLMは下層に広く注意が散らばっているピラミッド情報ファンリングを通じて情報を集約することがわかった。
これらの知見に触発され、我々は新しい効率的なKVキャッシュ圧縮法であるPraamid KVを開発した。
論文 参考訳(メタデータ) (2024-06-04T07:51:30Z) - ZipCache: Accurate and Efficient KV Cache Quantization with Salient Token Identification [19.985314022860432]
KVキャッシュは、再計算を避けるために、以前のトークンからキーと値の状態を格納する。
KVキャッシュ圧縮はトークンの正当性を識別し、重要でないトークンを積極的に圧縮しながら重要な情報を保存する。
LLMの高精度かつ効率的なKVキャッシュ量子化手法ZipCacheを提案する。
論文 参考訳(メタデータ) (2024-05-23T07:37:16Z) - Unlocking Data-free Low-bit Quantization with Matrix Decomposition for KV Cache Compression [87.5604418100301]
キー値(KV)キャッシングは,大規模言語モデルの推論を高速化する重要な手法である。
既存の手法はしばしば精度を損なうか、キャリブレーションのために余分なデータを必要とする。
テンソル分解法に基づく新しいデータフリー低ビット量子化手法である textbfDecoQuant を導入する。
論文 参考訳(メタデータ) (2024-05-21T08:35:10Z) - PyramidInfer: Pyramid KV Cache Compression for High-throughput LLM Inference [57.53291046180288]
大規模言語モデル(LLM)は、目覚ましい理解能力を示しているが、推論中のGPUメモリ使用の課題に直面している。
本稿では,KVキャッシュを重要なコンテキストを階層的に保持することで圧縮するPraamidInferを提案する。
PyramidInferは、KVキャッシュで54%以上のGPUメモリを削減したAccelerateと比較して、2.2倍のスループットを改善している。
論文 参考訳(メタデータ) (2024-05-21T06:46:37Z) - GEAR: An Efficient KV Cache Compression Recipe for Near-Lossless Generative Inference of LLM [37.87634266742105]
キーバリュー(KV)キャッシングは,大規模言語モデル(LLM)推論における生成速度を高速化するデファクトとなっている。
既存の方法は、重要でないトークンをドロップしたり、全てのエントリを均一に定量化することに依存している。
本稿では,高速なKVキャッシュ圧縮フレームワークであるGEARを提案する。
論文 参考訳(メタデータ) (2024-03-08T18:48:30Z) - KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [67.9776980972508]
我々はKIVIというチューニング不要な2ビットKVキャッシュ量子化アルゴリズムを開発した。
KIVI は Llama, Falcon, Mistral のモデルを $mathbf2.6times$ less peak memory を使用しながらほぼ同じ品質を維持することができる。
論文 参考訳(メタデータ) (2024-02-05T06:06:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。