論文の概要: PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling
- arxiv url: http://arxiv.org/abs/2406.02069v3
- Date: Thu, 03 Oct 2024 08:46:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-04 17:53:01.580588
- Title: PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling
- Title(参考訳): ピラミッドKV:ピラミッド情報ファネリングに基づく動的KVキャッシュ圧縮
- Authors: Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao Chang, Junjie Hu, Wen Xiao,
- Abstract要約: 本研究では,大規模言語モデル(LLM)内の注意に基づく情報フローが,長期的文脈処理のための顕著なパターンによって集約されるかどうかを検討する。
観測の結果,LLMは下層に広く注意が散らばっているピラミッド情報ファンリングを通じて情報を集約することがわかった。
これらの知見に触発され、我々は新しい効率的なKVキャッシュ圧縮法であるPraamid KVを開発した。
- 参考スコア(独自算出の注目度): 53.08975547824068
- License:
- Abstract: In this study, we investigate whether attention-based information flow inside large language models (LLMs) is aggregated through noticeable patterns for long context processing. Our observations reveal that LLMs aggregate information through Pyramidal Information Funneling where attention is scattering widely in lower layers, progressively consolidating within specific contexts, and ultimately focusing on critical tokens (a.k.a massive activation or attention sink) in higher layers. Motivated by these insights, we developed PyramidKV, a novel and effective KV cache compression method. This approach dynamically adjusts the KV cache size across different layers, allocating more cache in lower layers and less in higher ones, diverging from traditional methods that maintain a uniform KV cache size. Our experimental evaluations, utilizing the LongBench benchmark, show that PyramidKV matches the performance of models with a full KV cache while retaining only 12% of the KV cache, thus significantly reducing memory usage. In scenarios emphasizing memory efficiency, where only 0.7% of the KV cache is maintained, PyramidKV surpasses other KV cache compression techniques, achieving up to a 20.5 absolute accuracy improvement on TREC dataset. In the Needle-in-a-Haystack experiment, PyramidKV outperforms competing methods in maintaining long-context comprehension in LLMs; notably, retaining just 128 KV cache entries enables the LLAMA-3-70B model to achieve 100% Acc. performance, matching that of a full KV cache.
- Abstract(参考訳): 本研究では,大規模言語モデル(LLM)内の注意に基づく情報フローが,長期的文脈処理のための顕著なパターンによって集約されているかを検討する。
我々の観測では、LLMは、下層に注意が広く散らばっているピラミッド情報ファンリングを通じて情報を集約し、特定のコンテキスト内で徐々に統合し、最終的に、上層に重要なトークン(大規模なアクティベーションやアテンションシンク)に焦点を当てている。
これらの知見に触発され,新しいKVキャッシュ圧縮手法であるPraamidKVを開発した。
このアプローチは、異なる層にわたるKVキャッシュサイズを動的に調整し、下位層でより多くのキャッシュを割り当て、上位層では少ないキャッシュを割り当て、均一なKVキャッシュサイズを維持する従来の方法から切り離す。
実験では,LongBenchベンチマークを用いて,PraamidKVはKVキャッシュの12%しか保持せず,完全なKVキャッシュでモデルの性能と一致し,メモリ使用量を大幅に削減した。
メモリ効率を強調するシナリオでは、KVキャッシュのわずか0.7%しか維持されていないが、PraamidKVは他のKVキャッシュ圧縮技術を超え、TRECデータセットで最大20.5の精度向上を実現している。
Needle-in-a-Haystack実験では、PraamidKVはLLMの長いコンテキスト理解を維持する競合する手法よりも優れており、128KVのキャッシュエントリしか保持していないため、LLAMA-3-70Bモデルは100%Accを達成することができる。
完全なKVキャッシュにマッチするパフォーマンス。
関連論文リスト
- VL-Cache: Sparsity and Modality-Aware KV Cache Compression for Vision-Language Model Inference Acceleration [7.463830743649754]
VLM(Vision-Language Models)は、多目的なタスクセットにまたがる印象的なパフォーマンスを実証している。
キーバリュー(KV)キャッシュは、画像やビデオなどの長い視覚的コンテキストをエンコードする。
既存のKVキャッシュ圧縮手法は大規模言語モデル(LLM)に有効である
VLM推論の高速化に適した新しいKVキャッシュ圧縮レシピを提案する。
論文 参考訳(メタデータ) (2024-10-29T20:04:34Z) - Not All Heads Matter: A Head-Level KV Cache Compression Method with Integrated Retrieval and Reasoning [19.942402563256962]
キーバリューキャッシング(キーバリューキャッシング、英: Key-Value cache)は、大規模言語モデル(LLM)の計算効率を高めるための一般的な手法である。
本稿では,新たな文脈推論能力推定手法であるヘッドレベルのKVキャッシュ圧縮手法であるヘッドKVとヘッドKV-R2を提案する。
本手法は,文脈質問応答ベンチマークにおいて,全KVキャッシュの性能の97%を達成しつつ,KVキャッシュの1.5%しか保持しない。
論文 参考訳(メタデータ) (2024-10-25T02:22:00Z) - KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
我々は,層間をKVキャッシュで共有し,層間圧縮を実現する,textit KVSharerと呼ばれるプラグアンドプレイ方式を提案する。
実験の結果、textit KVSharerはKVキャッシュの計算を30%削減し、メモリ消費を削減できることがわかった。
我々は,textit KVSharerが既存の層内KVキャッシュ圧縮手法と互換性があることを検証する。
論文 参考訳(メタデータ) (2024-10-24T08:06:41Z) - Lossless KV Cache Compression to 2% [22.98828332096935]
この研究は、KVキャッシュを元のサイズの2%未満に圧縮することを目的とした、新しいアーキテクチャであるCLLA(Cross-Layer Latent Attention)を導入している。
CLLAは、アテンションヘッド/ディメンション低減、レイヤ共有、量子化技術を結合的なフレームワークに統合する。
論文 参考訳(メタデータ) (2024-10-20T02:17:35Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - A Simple and Effective $L_2$ Norm-Based Strategy for KV Cache Compression [13.981807478365452]
キーバリューキャッシュサイズを減らすための既存のアプローチは、圧縮戦略を学ぶためのモデルを微調整するか、シーケンス長を減らすためにアテンションスコアを利用するかのいずれかである。
キャッシュされたKVペアに対して、$L$とアテンションスコアとの間に明らかな相関関係が見られ、キー埋め込みの低い$L$がデコード時に高いアテンションスコアをもたらす。
実験の結果,この単純な手法により,言語モデリングやニードル・イン・ア・ヘイスタックタスクでは50%,パスキー検索タスクでは90%,精度を損なうことなく,KVキャッシュサイズを50%削減できることがわかった。
論文 参考訳(メタデータ) (2024-06-17T11:35:16Z) - MiniCache: KV Cache Compression in Depth Dimension for Large Language Models [48.03117580340151]
キーバリュー(KV)キャッシュは、以前に生成されたトークンのキー値状態を格納する。
KVキャッシュのサイズはシーケンス長とともに線形に増加し、長いコンテキスト入力と広範囲なシーケンス生成を必要とするアプリケーションの課題を提起する。
レイヤ間のKVキャッシュを,新しい奥行きの観点から圧縮する,MiniCacheという,シンプルで効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-23T09:43:52Z) - Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs [82.08922896531618]
大規模言語モデル(LLM)における生成推論のメモリフットプリントを削減するプラグイン・アンド・プレイ方式である適応KVキャッシュ圧縮を導入する。
我々は,アテンションモジュールの本質的な構造を明らかにするために,ターゲットプロファイリングを行う。
認識された構造に基づいて、我々はKVキャッシュを適応的に構築する: 注意頭上の長距離コンテキストを排除し、局所的なコンテキストを強調し、特別なトークンを中心とした注意頭上の特別なトークンを排除し、すべてのトークンに広く参加する注目頭に対して標準のKVキャッシュのみを使用する。
論文 参考訳(メタデータ) (2023-10-03T05:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。