Domain Shift Analysis in Chest Radiographs Classification in a Veterans Healthcare Administration Population
- URL: http://arxiv.org/abs/2407.21149v1
- Date: Tue, 30 Jul 2024 19:23:29 GMT
- Title: Domain Shift Analysis in Chest Radiographs Classification in a Veterans Healthcare Administration Population
- Authors: Mayanka Chandrashekar, Ian Goethert, Md Inzamam Ul Haque, Benjamin McMahon, Sayera Dhaubhadel, Kathryn Knight, Joseph Erdos, Donna Reagan, Caroline Taylor, Peter Kuzmak, John Michael Gaziano, Eileen McAllister, Lauren Costa, Yuk-Lam Ho, Kelly Cho, Suzanne Tamang, Samah Fodeh-Jarad, Olga S. Ovchinnikova, Amy C. Justice, Jacob Hinkle, Ioana Danciu,
- Abstract summary: We used a DenseNet121 model pretrained MIMIC-CXR dataset for deep learning-based multilabel classification.
We compared the performance of the 14 chest X-ray labels on the MIMIC-CXR and Veterans Healthcare Administration chest X-ray dataset (VA-CXR)
The VA-CXR dataset exhibited lower disagreement rates than the MIMIC-CXR datasets.
- Score: 3.4362586245712112
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Objectives: This study aims to assess the impact of domain shift on chest X-ray classification accuracy and to analyze the influence of ground truth label quality and demographic factors such as age group, sex, and study year. Materials and Methods: We used a DenseNet121 model pretrained MIMIC-CXR dataset for deep learning-based multilabel classification using ground truth labels from radiology reports extracted using the CheXpert and CheXbert Labeler. We compared the performance of the 14 chest X-ray labels on the MIMIC-CXR and Veterans Healthcare Administration chest X-ray dataset (VA-CXR). The VA-CXR dataset comprises over 259k chest X-ray images spanning between the years 2010 and 2022. Results: The validation of ground truth and the assessment of multi-label classification performance across various NLP extraction tools revealed that the VA-CXR dataset exhibited lower disagreement rates than the MIMIC-CXR datasets. Additionally, there were notable differences in AUC scores between models utilizing CheXpert and CheXbert. When evaluating multi-label classification performance across different datasets, minimal domain shift was observed in unseen datasets, except for the label "Enlarged Cardiomediastinum." The study year's subgroup analyses exhibited the most significant variations in multi-label classification model performance. These findings underscore the importance of considering domain shifts in chest X-ray classification tasks, particularly concerning study years. Conclusion: Our study reveals the significant impact of domain shift and demographic factors on chest X-ray classification, emphasizing the need for improved transfer learning and equitable model development. Addressing these challenges is crucial for advancing medical imaging and enhancing patient care.
Related papers
- Reproducing and Improving CheXNet: Deep Learning for Chest X-ray Disease Classification [0.24578723416255752]
On the publicly available NIH ChestX-ray14 dataset, we reproduced an algorithm known as CheXNet, as well as explored other algorithms that outperform CheXNet's baseline metrics.<n>The best model achieved an average AUC-ROC score of 0.85 and an average F1 score of 0.39 across all 14 disease classifications present in the dataset.
arXiv Detail & Related papers (2025-05-10T13:52:00Z) - LTCXNet: Advancing Chest X-Ray Analysis with Solutions for Long-Tailed Multi-Label Classification and Fairness Challenges [4.351007758390175]
Pruned MIMIC-CXR-LT dataset is designed to represent a long-tailed and multi-label data scenario.
We introduce LTCXNet, a novel framework that integrates the ConvNeXt model, ML-Decoder, and strategic data augmentation.
arXiv Detail & Related papers (2024-11-16T08:59:20Z) - Fairness Evolution in Continual Learning for Medical Imaging [47.52603262576663]
We study the behavior of Continual Learning (CL) strategies in medical imaging regarding classification performance.
We evaluate the Replay, Learning without Forgetting (LwF), LwF, and Pseudo-Label strategies.
LwF and Pseudo-Label exhibit optimal classification performance, but when including fairness metrics in the evaluation, it is clear that Pseudo-Label is less biased.
arXiv Detail & Related papers (2024-04-10T09:48:52Z) - CheXmask: a large-scale dataset of anatomical segmentation masks for multi-center chest x-ray images [5.155027747328496]
We introduce an extensive chest X-ray multi-center segmentation dataset with uniform and fine-grain anatomical annotations for images.
Our methodology utilizes the HybridGNet model to ensure consistent and high-quality segmentations.
This dataset serves as a valuable resource for the broader scientific community.
arXiv Detail & Related papers (2023-07-06T21:08:03Z) - MDF-Net for abnormality detection by fusing X-rays with clinical data [14.347359031598813]
This study investigates the effects of including patients' clinical information on the performance of deep learning (DL) classifiers for disease location in chest X-rays.
We propose a novel architecture consisting of two fusion methods that enable the model to simultaneously process patients' clinical data and chest X-rays.
Results show that incorporating patients' clinical data in a DL model together with the proposed fusion methods improves the disease localization in chest X-rays by 12% in terms of Average Precision.
arXiv Detail & Related papers (2023-02-26T19:16:57Z) - Long-Tailed Classification of Thorax Diseases on Chest X-Ray: A New
Benchmark Study [75.05049024176584]
We present a benchmark study of the long-tailed learning problem in the specific domain of thorax diseases on chest X-rays.
We focus on learning from naturally distributed chest X-ray data, optimizing classification accuracy over not only the common "head" classes, but also the rare yet critical "tail" classes.
The benchmark consists of two chest X-ray datasets for 19- and 20-way thorax disease classification, containing classes with as many as 53,000 and as few as 7 labeled training images.
arXiv Detail & Related papers (2022-08-29T04:34:15Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets [55.06983249986729]
We show that a deep learning model performing well when tested on the same dataset as training data starts to perform poorly when it is tested on a dataset from a different source.
By employing an adversarial training strategy, we show that a network can be forced to learn a source-invariant representation.
arXiv Detail & Related papers (2020-08-04T07:41:15Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z) - CheXclusion: Fairness gaps in deep chest X-ray classifiers [4.656202572362684]
We examine the extent to which state-of-the-art deep learning classifiers are biased with respect to protected attributes.
We train convolution neural networks to predict 14 diagnostic labels in 3 prominent public chest X-ray datasets.
We find that TPR disparities are not significantly correlated with a subgroup's proportional disease burden.
arXiv Detail & Related papers (2020-02-14T22:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.