論文の概要: Decomposed Prompting to Answer Questions on a Course Discussion Board
- arxiv url: http://arxiv.org/abs/2407.21170v1
- Date: Tue, 30 Jul 2024 20:24:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 13:07:45.632249
- Title: Decomposed Prompting to Answer Questions on a Course Discussion Board
- Title(参考訳): 講座委員会における質問に対する解答プロンプト
- Authors: Brandon Jaipersaud, Paul Zhang, Jimmy Ba, Andrew Petersen, Lisa Zhang, Michael R. Zhang,
- Abstract要約: 学生の質問を分類・回答するために,解答プロンプトを用いた質問応答システムを提案し,評価する。
我々のシステムは,質問を概念,宿題,物流,解答不能の4つのタイプのうちの1つに分類するために,大きな言語モデル(LLM)を使用している。
- 参考スコア(独自算出の注目度): 23.709524028713346
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose and evaluate a question-answering system that uses decomposed prompting to classify and answer student questions on a course discussion board. Our system uses a large language model (LLM) to classify questions into one of four types: conceptual, homework, logistics, and not answerable. This enables us to employ a different strategy for answering questions that fall under different types. Using a variant of GPT-3, we achieve $81\%$ classification accuracy. We discuss our system's performance on answering conceptual questions from a machine learning course and various failure modes.
- Abstract(参考訳): 本稿では,学生の質問を分類・回答するために,解答プロンプトを用いた質問応答システムを提案し,評価する。
我々のシステムは,質問を概念,宿題,物流,解答不能の4つのタイプのうちの1つに分類するために,大きな言語モデル(LLM)を使用している。
これにより、異なるタイプに該当する質問に答えるための異なる戦略が採用できます。
GPT-3 の変種を用いて,分類精度が 81 % である。
本稿では,機械学習コースと様々な障害モードから概念的疑問に答えるシステムの性能について論じる。
関連論文リスト
- Which questions should I answer? Salience Prediction of Inquisitive Questions [118.097974193544]
非常に健全な質問は、同じ記事で経験的に答えられる可能性が高いことを示す。
質問に対する回答が,ニュースの要約品質の指標であることを示すことで,我々の知見をさらに検証する。
論文 参考訳(メタデータ) (2024-04-16T21:33:05Z) - Can NLP Models 'Identify', 'Distinguish', and 'Justify' Questions that
Don't have a Definitive Answer? [43.03399918557937]
現実世界のアプリケーションでは、ユーザは決定的な答えを持たない質問をすることが多い。
QnotAは、明確な答えを持たない5つのカテゴリの質問からなるデータセットである。
このデータを用いて、システムの「識別」、「識別」、QnotA質問を「正当化」する能力をテストする3つの評価タスクを定式化する。
GPT-3 や Flan T5 といった SOTA モデルでさえ,これらのタスクはうまく行っていない。
論文 参考訳(メタデータ) (2023-09-08T23:12:03Z) - Answering Ambiguous Questions with a Database of Questions, Answers, and
Revisions [95.92276099234344]
ウィキペディアから生成される曖昧な質問のデータベースを利用して、あいまいな質問に答えるための新しい最先端技術を提案する。
提案手法は,リコール対策で15%,予測出力から不明瞭な質問を評価する尺度で10%向上する。
論文 参考訳(メタデータ) (2023-08-16T20:23:16Z) - What Types of Questions Require Conversation to Answer? A Case Study of
AskReddit Questions [16.75969771718778]
本研究の目的は,会話を通じて最もよく答えられる無謀でオープンな質問の種類を調べることで,会話システムの境界を推し進めることである。
我々は、AskRedditに投稿された100万件のオープンエンドリクエストから500件の質問をサンプリングし、オンラインの群衆労働者を雇い、これらの質問について8つの質問に答えた。
私たちは、人々が十分に解決するために会話を必要とすると信じている問題は、非常に社会的かつ個人的なものであることに気付きました。
論文 参考訳(メタデータ) (2023-03-30T21:05:22Z) - Learn to Explain: Multimodal Reasoning via Thought Chains for Science
Question Answering [124.16250115608604]
本稿では,SQA(Science Question Answering)について紹介する。SQA(Science Question Answering)は,21万のマルチモーダルな複数選択質問と多様な科学トピックと,それに対応する講義や説明による回答の注釈からなる新しいベンチマークである。
また,SQAでは,数ショットのGPT-3では1.20%,微調整のUnifiedQAでは3.99%の改善が見られた。
我々の分析は、人間に似た言語モデルは、より少ないデータから学習し、わずか40%のデータで同じパフォーマンスを達成するのに、説明の恩恵を受けることを示している。
論文 参考訳(メタデータ) (2022-09-20T07:04:24Z) - Interactive Question Answering Systems: Literature Review [17.033640293433397]
対話型質問応答(Interactive Question answering)は、質問応答と対話システムの交差点に存在する、最近提案され、ますます人気が高まっているソリューションである。
ユーザがより多くの質問をできるようにすることで、インタラクティブな質問応答によって、ユーザはシステムと動的に対話し、より正確な結果を受け取ることができる。
本調査は,現在の文献で広く普及している対話型質問応答法の概要を概説する。
論文 参考訳(メタデータ) (2022-09-04T13:46:54Z) - "What makes a question inquisitive?" A Study on Type-Controlled
Inquisitive Question Generation [35.87102025753666]
質問生成のためのタイプ制御フレームワークを提案する。
私たちは、ソーステキストから描画しながら、特定のタイプに固執する様々な質問を生成します。
また、生成した集合から1つの質問を選択する戦略についても検討する。
論文 参考訳(メタデータ) (2022-05-17T02:05:50Z) - How Do We Answer Complex Questions: Discourse Structure of Long-form
Answers [51.973363804064704]
3つのデータセットから収集した長文回答の機能構造について検討した。
私たちの主な目標は、人間が複雑な答えを作るためにどのように情報を整理するかを理解することです。
我々の研究は、長期QAシステムの談話レベルのモデリングと評価に関する将来の研究に刺激を与えることができる。
論文 参考訳(メタデータ) (2022-03-21T15:14:10Z) - Few-Shot Complex Knowledge Base Question Answering via Meta
Reinforcement Learning [55.08037694027792]
複雑な質問答え(CQA)は、知識ベース(KB)上の複雑な自然言語質問に答える。
従来のニューラルプログラム誘導(NPI)アプローチは、質問の種類が異なる場合、不均一なパフォーマンスを示す。
本稿では,CQAにおけるプログラム誘導のためのメタ強化学習手法を提案する。
論文 参考訳(メタデータ) (2020-10-29T18:34:55Z) - Stay Hungry, Stay Focused: Generating Informative and Specific Questions
in Information-Seeking Conversations [41.74162467619795]
情報非対称な会話における情報的質問生成の問題について検討する。
実践的な質問を生成するために,情報量測定を最適化するために強化学習を用いる。
そこで本研究では,提案した実用的質問は,ベースラインモデル上で生成した質問の有意性と特異性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2020-04-30T00:49:14Z) - Unsupervised Question Decomposition for Question Answering [102.56966847404287]
本論文では, ワンツーNアン教師付きシーケンスシーケンス(ONUS)のアルゴリズムを提案する。
当初,ドメイン外,マルチホップ開発セットのベースラインが強かったため,HotpotQAでは大きなQA改善が見られた。
論文 参考訳(メタデータ) (2020-02-22T19:40:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。