DeepBaR: Fault Backdoor Attack on Deep Neural Network Layers
- URL: http://arxiv.org/abs/2407.21220v1
- Date: Tue, 30 Jul 2024 22:14:47 GMT
- Title: DeepBaR: Fault Backdoor Attack on Deep Neural Network Layers
- Authors: C. A. Martínez-Mejía, J. Solano, J. Breier, D. Bucko, X. Hou,
- Abstract summary: We introduce DeepBaR, a novel approach that implants backdoors on neural networks by faulting their behavior at training.
We attack three popular convolutional neural network architectures and show that DeepBaR attacks have a success rate of up to 98.30%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Learning using neural networks has received prominent attention recently because of its success in solving a wide variety of computational tasks, in particular in the field of computer vision. However, several works have drawn attention to potential security risks involved with the training and implementation of such networks. In this work, we introduce DeepBaR, a novel approach that implants backdoors on neural networks by faulting their behavior at training, especially during fine-tuning. Our technique aims to generate adversarial samples by optimizing a custom loss function that mimics the implanted backdoors while adding an almost non-visible trigger in the image. We attack three popular convolutional neural network architectures and show that DeepBaR attacks have a success rate of up to 98.30\%. Furthermore, DeepBaR does not significantly affect the accuracy of the attacked networks after deployment when non-malicious inputs are given. Remarkably, DeepBaR allows attackers to choose an input that looks similar to a given class, from a human perspective, but that will be classified as belonging to an arbitrary target class.
Related papers
- Backdoor Attack Detection in Computer Vision by Applying Matrix
Factorization on the Weights of Deep Networks [6.44397009982949]
We introduce a novel method for backdoor detection that extracts features from pre-trained DNN's weights.
In comparison to other detection techniques, this has a number of benefits, such as not requiring any training data.
Our method outperforms the competing algorithms in terms of efficiency and is more accurate, helping to ensure the safe application of deep learning and AI.
arXiv Detail & Related papers (2022-12-15T20:20:18Z) - Dynamics-aware Adversarial Attack of Adaptive Neural Networks [75.50214601278455]
We investigate the dynamics-aware adversarial attack problem of adaptive neural networks.
We propose a Leaded Gradient Method (LGM) and show the significant effects of the lagged gradient.
Our LGM achieves impressive adversarial attack performance compared with the dynamic-unaware attack methods.
arXiv Detail & Related papers (2022-10-15T01:32:08Z) - An anomaly detection approach for backdoored neural networks: face
recognition as a case study [77.92020418343022]
We propose a novel backdoored network detection method based on the principle of anomaly detection.
We test our method on a novel dataset of backdoored networks and report detectability results with perfect scores.
arXiv Detail & Related papers (2022-08-22T12:14:13Z) - Verifying Neural Networks Against Backdoor Attacks [7.5033553032683855]
We propose an approach to verify whether a given neural network is free of backdoor with a certain level of success rate.
Experiment results show that our approach effectively verifies the absence of backdoor or generates backdoor triggers.
arXiv Detail & Related papers (2022-05-14T07:25:54Z) - FooBaR: Fault Fooling Backdoor Attack on Neural Network Training [5.639451539396458]
We explore a novel attack paradigm by injecting faults during the training phase of a neural network in a way that the resulting network can be attacked during deployment without the necessity of further faulting.
We call such attacks fooling backdoors as the fault attacks at the training phase inject backdoors into the network that allow an attacker to produce fooling inputs.
arXiv Detail & Related papers (2021-09-23T09:43:19Z) - Check Your Other Door! Establishing Backdoor Attacks in the Frequency
Domain [80.24811082454367]
We show the advantages of utilizing the frequency domain for establishing undetectable and powerful backdoor attacks.
We also show two possible defences that succeed against frequency-based backdoor attacks and possible ways for the attacker to bypass them.
arXiv Detail & Related papers (2021-09-12T12:44:52Z) - Can You Hear It? Backdoor Attacks via Ultrasonic Triggers [31.147899305987934]
In this work, we explore the option of backdoor attacks to automatic speech recognition systems where we inject inaudible triggers.
Our results indicate that less than 1% of poisoned data is sufficient to deploy a backdoor attack and reach a 100% attack success rate.
arXiv Detail & Related papers (2021-07-30T12:08:16Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z) - Hardware Accelerator for Adversarial Attacks on Deep Learning Neural
Networks [7.20382137043754]
A class of adversarial attack network algorithms has been proposed to generate robust physical perturbations.
In this paper, we propose the first hardware accelerator for adversarial attacks based on memristor crossbar arrays.
arXiv Detail & Related papers (2020-08-03T21:55:41Z) - Cassandra: Detecting Trojaned Networks from Adversarial Perturbations [92.43879594465422]
In many cases, pre-trained models are sourced from vendors who may have disrupted the training pipeline to insert Trojan behaviors into the models.
We propose a method to verify if a pre-trained model is Trojaned or benign.
Our method captures fingerprints of neural networks in the form of adversarial perturbations learned from the network gradients.
arXiv Detail & Related papers (2020-07-28T19:00:40Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturb is an end-to-end feature perturbation learning approach for improving the adversarial robustness of deep neural networks.
Inspired by the Expectation-Maximization, an alternating back-propagation training algorithm is introduced to train the network and noise parameters consecutively.
arXiv Detail & Related papers (2020-03-02T18:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.