論文の概要: Adaptive Pre-training Data Detection for Large Language Models via Surprising Tokens
- arxiv url: http://arxiv.org/abs/2407.21248v1
- Date: Tue, 30 Jul 2024 23:43:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 19:04:58.192529
- Title: Adaptive Pre-training Data Detection for Large Language Models via Surprising Tokens
- Title(参考訳): プライシングトークンによる大規模言語モデルに対する適応型事前学習データ検出
- Authors: Anqi Zhang, Chaofeng Wu,
- Abstract要約: 大きな言語モデル(LLM)は広く使われているが、プライバシー、セキュリティ、著作権については不透明なトレーニングデータのために懸念されている。
この問題に対する現在の解決策は、メンバーシップ推論攻撃(MIA)のような機械学習プライバシで探索されたテクニックを活用する。
本稿では、この信頼性を軽減し、同定を効果的に増幅する適応型事前学習データ検出法を提案する。
- 参考スコア(独自算出の注目度): 1.2549198550400134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While large language models (LLMs) are extensively used, there are raising concerns regarding privacy, security, and copyright due to their opaque training data, which brings the problem of detecting pre-training data on the table. Current solutions to this problem leverage techniques explored in machine learning privacy such as Membership Inference Attacks (MIAs), which heavily depend on LLMs' capability of verbatim memorization. However, this reliance presents challenges, especially given the vast amount of training data and the restricted number of effective training epochs. In this paper, we propose an adaptive pre-training data detection method which alleviates this reliance and effectively amplify the identification. Our method adaptively locates \textit{surprising tokens} of the input. A token is surprising to a LLM if the prediction on the token is "certain but wrong", which refers to low Shannon entropy of the probability distribution and low probability of the ground truth token at the same time. By using the prediction probability of surprising tokens to measure \textit{surprising}, the detection method is achieved based on the simple hypothesis that seeing seen data is less surprising for the model compared with seeing unseen data. The method can be applied without any access to the the pre-training data corpus or additional training like reference models. Our approach exhibits a consistent enhancement compared to existing methods in diverse experiments conducted on various benchmarks and models, achieving a maximum improvement of 29.5\%. We also introduce a new benchmark Dolma-Book developed upon a novel framework, which employs book data collected both before and after model training to provide further evaluation.
- Abstract(参考訳): 大規模言語モデル(LLM)は広く使用されているが、不透明なトレーニングデータのためにプライバシー、セキュリティ、著作権に関する懸念が高まっている。
この問題に対する現在の解決策は、LLMの冗長記憶能力に大きく依存する、メンバーシップ推論攻撃(MIA)のような機械学習プライバシで探索されたテクニックを活用する。
しかし、この依存は、特に膨大なトレーニングデータと効果的なトレーニングエポックの制限数を考えると、課題を提起する。
本稿では、この信頼性を軽減し、識別を効果的に増幅する適応型事前学習データ検出法を提案する。
本手法は入力の <textit{surprising tokens} を適応的に検出する。
トークンがLLMに驚くべきのは、トークン上の予測が"確かだが間違った"場合であり、これは確率分布のシャノンエントロピーが低く、基底真理トークンの確率が低いことを指す。
予期せぬトークンの予測確率を用いて, 未知のデータと比較すると, 目に見えないデータを見ることは, モデルにとって意外ではないという単純な仮説に基づいて, 検出を行う。
この方法は、事前トレーニングデータコーパスへのアクセスや、参照モデルのような追加のトレーニングを必要とせずに適用することができる。
提案手法は, 各種ベンチマークおよびモデルを用いた各種実験において, 既存手法と比較して一貫した拡張性を示し, 29.5 % の最大改善を実現している。
また、モデルトレーニング前後に収集した書籍データを用いて、新たな評価を行う新しいフレームワーク上で開発されたDolma-Bookベンチマークも導入した。
関連論文リスト
- Pretraining Data Detection for Large Language Models: A Divergence-based Calibration Method [108.56493934296687]
本研究では,乱数から発散する概念に触発された偏差に基づくキャリブレーション手法を導入し,プリトレーニングデータ検出のためのトークン確率のキャリブレーションを行う。
我々は,中国語テキスト上でのLLMの検出手法の性能を評価するために,中国語のベンチマークであるPatentMIAを開発した。
論文 参考訳(メタデータ) (2024-09-23T07:55:35Z) - Training on the Benchmark Is Not All You Need [52.01920740114261]
本稿では,複数選択肢の内容に基づいた簡易かつ効果的なデータ漏洩検出手法を提案する。
本手法は,モデルトレーニングデータや重みを使用せずに,ブラックボックス条件下で動作することができる。
我々は,4つのベンチマークデータセットを用いて,31個の主要なオープンソースLCMのデータ漏洩の程度を評価する。
論文 参考訳(メタデータ) (2024-09-03T11:09:44Z) - Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification [34.37262622415682]
我々はData Adaptive Tracebackと呼ばれる新しい適応フレームワークを提案する。
具体的には、ゼロショット法を用いて、事前学習データの最もダウンストリームなタスク関連サブセットを抽出する。
我々は、擬似ラベルに基づく半教師付き手法を採用し、事前学習画像の再利用と、半教師付き学習における確証バイアス問題に対処するための視覚言語コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-07-11T18:01:58Z) - Probing Language Models for Pre-training Data Detection [11.37731401086372]
本稿では,モデルの内部アクティベーションを調べることで,事前学習データ検出のための探索手法を提案する。
我々の手法はシンプルで効果的であり、より信頼性の高い事前学習データ検出につながる。
論文 参考訳(メタデータ) (2024-06-03T13:58:04Z) - Detecting Pretraining Data from Large Language Models [90.12037980837738]
事前学習データ検出問題について検討する。
事前学習データを知ることなく、テキスト片とLCMへのブラックボックスアクセスを条件に、モデルが提供されたテキストでトレーニングされたかどうかを判断できますか?
簡単な仮説に基づく新しい検出手法Min-K% Probを提案する。
論文 参考訳(メタデータ) (2023-10-25T17:21:23Z) - Overcoming Overconfidence for Active Learning [1.2776312584227847]
本稿では,アクティブな学習シナリオで発生する過信の問題に対処する2つの新しい手法を提案する。
1つ目はCross-Mix-and-Mix(CMaM)と呼ばれる拡張戦略で、限られたトレーニング分布を拡張してモデルを校正することを目的としている。
2つ目は Ranked Margin Sampling (RankedMS) という選択戦略である。
論文 参考訳(メタデータ) (2023-08-21T09:04:54Z) - Ethicist: Targeted Training Data Extraction Through Loss Smoothed Soft
Prompting and Calibrated Confidence Estimation [56.57532238195446]
本研究では,対象とするトレーニングデータ抽出のためのEthicistという手法を提案する。
メモリ化を誘発するため、モデルを固定しながらソフトなプロンプト埋め込みをチューニングする。
我々は,最近提案された公開ベンチマークにおいて,エティシストが抽出性能を著しく向上することを示す。
論文 参考訳(メタデータ) (2023-07-10T08:03:41Z) - Conformal prediction for the design problem [72.14982816083297]
機械学習の現実的な展開では、次にテストすべきデータを選択するために予測アルゴリズムを使用します。
このような設定では、トレーニングデータとテストデータの間には、異なるタイプの分散シフトがある。
このような環境で予測の不確実性を定量化する手法を提案する。
論文 参考訳(メタデータ) (2022-02-08T02:59:12Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。