論文の概要: Automated Quantification of Hyperreflective Foci in SD-OCT With Diabetic Retinopathy
- arxiv url: http://arxiv.org/abs/2407.21272v1
- Date: Wed, 31 Jul 2024 01:33:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 19:04:58.115111
- Title: Automated Quantification of Hyperreflective Foci in SD-OCT With Diabetic Retinopathy
- Title(参考訳): 糖尿病網膜症におけるSD-OCTの高反射域自動定量化
- Authors: Idowu Paul Okuwobi, Zexuan Ji, Wen Fan, Songtao Yuan, Loza Bekalo, Qiang Chen,
- Abstract要約: 超反射率(HF)の分別と定量化のための自動定量化アルゴリズムを提案する。
提案アルゴリズムは、関心領域(ROI)生成とHFs推定という2つの並列プロセスからなる。
提案アルゴリズムは,HFsの体積,サイズ,位置など,優れたHFs定量情報を眼科医に提供する。
- 参考スコア(独自算出の注目度): 11.217126832437149
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The presence of hyperreflective foci (HFs) is related to retinal disease progression, and the quantity has proven to be a prognostic factor of visual and anatomical outcome in various retinal diseases. However, lack of efficient quantitative tools for evaluating the HFs has deprived ophthalmologist of assessing the volume of HFs. For this reason, we propose an automated quantification algorithm to segment and quantify HFs in spectral domain optical coherence tomography (SD-OCT). The proposed algorithm consists of two parallel processes namely: region of interest (ROI) generation and HFs estimation. To generate the ROI, we use morphological reconstruction to obtain the reconstructed image and histogram constructed for data distributions and clustering. In parallel, we estimate the HFs by extracting the extremal regions from the connected regions obtained from a component tree. Finally, both the ROI and the HFs estimation process are merged to obtain the segmented HFs. The proposed algorithm was tested on 40 3D SD-OCT volumes from 40 patients diagnosed with non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR), and diabetic macular edema (DME). The average dice similarity coefficient (DSC) and correlation coefficient (r) are 69.70%, 0.99 for NPDR, 70.31%, 0.99 for PDR, and 71.30%, 0.99 for DME, respectively. The proposed algorithm can provide ophthalmologist with good HFs quantitative information, such as volume, size, and location of the HFs.
- Abstract(参考訳): 高反射性焦点(HFs)の存在は網膜疾患の進行と関係しており、様々な網膜疾患における視覚的および解剖学的結果の予後因子であることが証明されている。
しかし、HFsを評価するための効率的な定量的ツールが欠如しているため、眼科医はHFsの量を評価することは出来なくなった。
そこで本研究では,スペクトル領域光コヒーレンストモグラフィ(SD-OCT)におけるHFの分別と定量化のための自動定量化アルゴリズムを提案する。
提案アルゴリズムは、関心領域(ROI)生成とHFs推定という2つの並列プロセスからなる。
ROIを生成するために,データ分散とクラスタリングのために構築された再構成画像とヒストグラムを得るために形態的再構成を用いる。
並行して、成分木から得られた連結領域から極端領域を抽出することにより、HFを推定する。
最後に、ROIとHFs推定プロセスの両方をマージして、セグメント化されたHFを得る。
提案アルゴリズムは,非増殖性糖尿病網膜症 (NPDR), 増殖性糖尿病網膜症 (PDR), 糖尿病性黄斑浮腫 (DME) と診断された40例の3D SD-OCTボリュームについて検討した。
平均ダイス類似係数(DSC)と相関係数(r)はそれぞれ69.70%、NPDRは0.99、PDRは70.31%、PDRは0.99、DMEは71.30%、DMEは0.99である。
提案アルゴリズムは,HFsの体積,サイズ,位置など,優れたHFs定量情報を眼科医に提供する。
関連論文リスト
- Three-dimensional micro-structurally informed in silico myocardium --
towards virtual imaging trials in cardiac diffusion weighted MRI [58.484353709077034]
本稿では,心筋微細構造の数値ファントムを現実的に生成する新しい手法を提案する。
シリコン組織モデルにより、磁気共鳴イメージングの定量的モデルを評価することができる。
論文 参考訳(メタデータ) (2022-08-22T22:01:44Z) - CNN-based fully automatic wrist cartilage volume quantification in MR
Image [55.41644538483948]
追加の注意層を持つU-net畳み込みニューラルネットワークは、最高の手首軟骨分割性能を提供する。
非MRI法を用いて軟骨体積測定の誤差を独立に評価すべきである。
論文 参考訳(メタデータ) (2022-06-22T14:19:06Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
側方循環は、血流を妥協した領域に酸素を供給する特殊な無酸素流路から生じる。
実際のグレーティングは主に、取得した画像の手動検査によって行われる。
MR灌流データから抽出した放射線学的特徴に基づいて,脳卒中患者の側方血流低下を予測するための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T18:58:40Z) - Osteoporosis Prescreening using Panoramic Radiographs through a Deep
Convolutional Neural Network with Attention Mechanism [65.70943212672023]
注意モジュールを持つディープ畳み込みニューラルネットワーク(CNN)はパノラマX線写真上で骨粗しょう症を検出することができる。
49歳から60歳までの70種類のパノラマX線写真(PR)のデータセットを用いて検討した。
論文 参考訳(メタデータ) (2021-10-19T00:03:57Z) - Multi-Scale Convolutional Neural Network for Automated AMD
Classification using Retinal OCT Images [1.299941371793082]
加齢関連黄斑変性症(AMD)は、先進国、特に60歳以上の人々において、視覚障害の最も一般的な原因である。
近年のディープラーニングの発展は、完全に自動化された診断フレームワークの開発にユニークな機会を与えている。
様々な大きさの受容場を用いて病理を識別できる多スケール畳み込みニューラルネットワーク(CNN)を提案する。
論文 参考訳(メタデータ) (2021-10-06T18:20:58Z) - A new approach to extracting coronary arteries and detecting stenosis in
invasive coronary angiograms [9.733630514873376]
我々は,ICAから冠状動脈を抽出する深層学習による自動アルゴリズムの開発を目指している。
本研究では, マルチインプットとマルチスケール(MIMS)のU-Netを2段階の繰り返し訓練戦略として提案した。
実験の結果,提案手法は平均diceスコア 0.8329, 平均感度 0.8281, 平均特異度 0.9979 となり, 73例から294 icasを得た。
論文 参考訳(メタデータ) (2021-01-25T01:48:27Z) - Spatio-temporal Multi-task Learning for Cardiac MRI Left Ventricle
Quantification [6.887389908965403]
心左心室(LV)形態の完全な測定セットを得るための学習時型マルチタスクアプローチを提案します。
まず,エンコーダデコーダネットワークを用いてLVを分割し,11のLV指標を回帰し,心相を分類する枠組みを導入する。
提案モデルは,mr画像から空間的特徴と特徴を抽出する3次元時空間畳み込みに基づく。
論文 参考訳(メタデータ) (2020-12-24T17:48:35Z) - DcardNet: Diabetic Retinopathy Classification at Multiple Levels Based
on Structural and Angiographic Optical Coherence Tomography [1.9262162668141078]
糖尿病網膜症(DR)分類の枠組みを満たすために,畳み込みニューラルネットワーク(CNN)に基づく手法を提案する。
DR分類のために、適応レートドロップアウト(DcardNet)を備えた高密度かつ連続的に接続されたニューラルネットワークを設計する。
国際臨床糖尿病網膜症尺度に基づいて3つの分類レベルを作成した。
論文 参考訳(メタデータ) (2020-06-09T19:44:10Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。