論文の概要: Comprehensive Evaluation of OCT-based Automated Segmentation of Retinal Layer, Fluid and Hyper-Reflective Foci: Impact on Diabetic Retinopathy Severity Assessment
- arxiv url: http://arxiv.org/abs/2503.01248v3
- Date: Fri, 11 Apr 2025 03:23:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:16:37.788682
- Title: Comprehensive Evaluation of OCT-based Automated Segmentation of Retinal Layer, Fluid and Hyper-Reflective Foci: Impact on Diabetic Retinopathy Severity Assessment
- Title(参考訳): 糖尿病網膜症重症度評価における網膜層, 流体, 高反射域の自動分画の総合的評価
- Authors: S. Chen, D. Ma, M. Raviselvan, S. Sundaramoorthy, K. Popuri, M. J. Ju, M. V. Sarunic, D. Ratra, M. F. Beg,
- Abstract要約: 糖尿病網膜症(DR)は視覚障害の主要な原因であり、不可逆的な損傷を防ぐために早期かつ正確な評価が必要である。
本研究では,網膜層の自動セグメンテーションのための能動的学習に基づくディープラーニングパイプラインを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Diabetic retinopathy (DR) is a leading cause of vision loss, requiring early and accurate assessment to prevent irreversible damage. Spectral Domain Optical Coherence Tomography (SD-OCT) enables high-resolution retinal imaging, but automated segmentation performance varies, especially in cases with complex fluid and hyperreflective foci (HRF) patterns. This study proposes an active-learning-based deep learning pipeline for automated segmentation of retinal layers, fluid, and HRF, using four state-of-the-art models: U-Net, SegFormer, SwinUNETR, and VM-UNet, trained on expert-annotated SD-OCT volumes. Segmentation accuracy was evaluated with five-fold cross-validation, and retinal thickness was quantified using a K-nearest neighbors algorithm and visualized with Early Treatment Diabetic Retinopathy Study (ETDRS) maps. SwinUNETR achieved the highest overall accuracy (DSC = 0.7719; NSD = 0.8149), while VM-UNet excelled in specific layers. Structural differences were observed between non-proliferative and proliferative DR, with layer-specific thickening correlating with visual acuity impairment. The proposed framework enables robust, clinically relevant DR assessment while reducing the need for manual annotation, supporting improved disease monitoring and treatment planning.
- Abstract(参考訳): 糖尿病網膜症(DR)は視覚障害の主要な原因であり、不可逆的な損傷を防ぐために早期かつ正確な評価が必要である。
Spectral Domain Optical Coherence Tomography (SD-OCT) は高分解能網膜イメージングを可能にするが、特に複雑な流体やHRFパターンの場合には自動セグメンテーション性能が異なる。
本研究では,エキスパートアノテートSD-OCTボリュームに基づいてトレーニングされたU-Net, SegFormer, SwinUNETR, VM-UNetの4つの最先端モデルを用いて,網膜層, 流体, HRFの自動セグメンテーションのためのアクティブラーニングベースのディープラーニングパイプラインを提案する。
K-nearest neighborsアルゴリズムを用いて網膜厚を定量化し, 早期糖尿病網膜症研究(ETDRS)マップで可視化した。
SwinUNETRは高い総合精度(DSC = 0.7719; NSD = 0.8149)を達成し、VM-UNetは特定の層で優れていた。
非増殖性DRと増殖性DRとの間には構造的差異がみられ, 層比増厚は視力障害と関連していた。
提案フレームワークは,手動アノテーションの必要性を低減しつつ,堅牢で臨床的に関係のあるDRアセスメントを可能にし,疾患のモニタリングと治療計画の改善をサポートする。
関連論文リスト
- Deep Learning-Based Detection of Referable Diabetic Retinopathy and Macular Edema Using Ultra-Widefield Fundus Imaging [0.6727410055112188]
糖尿病網膜症や糖尿病黄斑浮腫は、視力喪失につながる糖尿病の重大な合併症である。
超広視野眼底画像による早期発見は、患者の成果を高めるが、画質と分析スケールの課題を提示する。
本稿では,MICCAI 2024 UWF4DRチャレンジの枠組みの中で,自動UWF画像解析のためのディープラーニングソリューションを提案する。
論文 参考訳(メタデータ) (2024-09-19T15:51:48Z) - Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging [70.66500060987312]
拡散強調画像(DWI)は、水分子の拡散率に感応した磁気共鳴イメージング(MRI)の一種である。
本研究はDirGeo-DTIを提案する。DirGeo-DTIは、勾配方向の最小理論数(6)で得られたDWIの集合からでも、信頼できるDTIメトリクスを推定する深層学習に基づく手法である。
論文 参考訳(メタデータ) (2024-09-11T11:12:26Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
オプティカルコヒーレンス・トモグラフィーは、網膜微小血管の画像化によってアルツハイマー病(AD)を検出するための有望なツールである。
我々はPolar-Netと呼ばれる新しいディープラーニングフレームワークを提案し、解釈可能な結果を提供し、臨床上の事前知識を活用する。
Polar-Netは既存の最先端の手法よりも優れており,網膜血管変化とADとの関連性について,より貴重な病理学的証拠を提供する。
論文 参考訳(メタデータ) (2023-11-10T11:49:49Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - Automated analysis of diabetic retinopathy using vessel segmentation
maps as inductive bias [6.667329719331044]
糖尿病網膜症の早期は、深部血管複合体の血管変化をモニタリングすることによって診断できる。
本研究では,光コヒーレンストモグラフィアンギオグラフィー(OCTA)画像に基づく新しいDRグレーティング法について検討する。
論文 参考訳(メタデータ) (2022-10-28T10:58:53Z) - Parametric Scaling of Preprocessing assisted U-net Architecture for
Improvised Retinal Vessel Segmentation [1.3869502085838448]
本稿では,形態素前処理と拡張U-netアーキテクチャを併用した画像強調手法を提案する。
ROC曲線 (>0.9762) と分類精度 (>95.47%) の領域において、領域内の他のアルゴリズムと比較して顕著な改善が得られた。
論文 参考訳(メタデータ) (2022-03-18T15:26:05Z) - Symmetry-Enhanced Attention Network for Acute Ischemic Infarct
Segmentation with Non-Contrast CT Images [50.55978219682419]
急性虚血性梗塞セグメンテーションのための対称性増強型注意ネットワーク(SEAN)を提案する。
提案するネットワークは、入力されたCT画像を、脳組織が左右対称な標準空間に自動的に変換する。
提案したSEANは、ダイス係数と梗塞局所化の両方の観点から、対称性に基づく最先端の手法より優れている。
論文 参考訳(メタデータ) (2021-10-11T07:13:26Z) - Segmentation of Anatomical Layers and Artifacts in Intravascular
Polarization Sensitive Optical Coherence Tomography Using Attending Physician
and Boundary Cardinality Lost Terms [4.93836246080317]
血管内超音波と光コヒーレンス断層撮影は冠状動脈を特徴付けるために広く利用可能である。
畳み込みニューラルネットワークモデルを提案し,その性能を多項損失関数を用いて最適化する。
モデルは2つの主要なアーティファクトのクラスをセグメンテーションし,血管壁領域内の解剖学的層を検出する。
論文 参考訳(メタデータ) (2021-05-11T15:52:31Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
網膜血管と主要動脈を2次元基底画像と3次元CTアンギオグラフィー(CTA)スキャンで分割する,PC-Netと呼ばれる新しいディープラーニングモデルを提案する。
PC-Netでは、ピラミッド圧縮励起(PSE)モジュールが各畳み込みブロックに空間情報を導入し、より効果的なマルチスケール特徴を抽出する能力を高めている。
論文 参考訳(メタデータ) (2020-10-09T08:22:54Z) - Assignment Flow for Order-Constrained OCT Segmentation [0.0]
網膜層厚の同定は、患者ごとに個別に行う重要な課題である。
自動セグメンテーションモデルの構築は,医用画像処理分野において重要な課題となっている。
我々は、秩序に制約された3D OCT網膜細胞層セグメンテーションのための新しい、純粋にデータ駆動型テキスト幾何学的アプローチを提案する。
論文 参考訳(メタデータ) (2020-09-10T01:57:53Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
本稿では,網膜血管,動脈,静脈を同時に分割する空間活性化機構を備えたマルチタスクディープニューラルネットワークを提案する。
提案するネットワークは,容器分割における画素ワイド精度95.70%,A/V分類精度94.50%を実現している。
論文 参考訳(メタデータ) (2020-07-18T05:46:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。