Fi$^2$VTS: Time Series Forecasting Via Capturing Intra- and Inter-Variable Variations in the Frequency Domain
- URL: http://arxiv.org/abs/2407.21275v7
- Date: Sun, 3 Nov 2024 04:17:58 GMT
- Title: Fi$^2$VTS: Time Series Forecasting Via Capturing Intra- and Inter-Variable Variations in the Frequency Domain
- Authors: Rujia Shen, Yang Yang, Yaoxion Lin, Liangliang Liu, Boran Wang, Yi Guan, Jingchi Jiang,
- Abstract summary: Time series forecasting (TSF) plays a crucial role in various applications, including medical monitoring and crop growth.
We introduce the Fi$2$VBlock, which leverages a textbfFrequency domain perspective to capture textbfintra- and textbfinter- textbfVariations.
Inception blocks are employed to integrate information, thus capturing correlations across different variables.
Our backbone network, Fi$2$VTS, employs a residual architecture by concatenating multiple Fi$2$
- Score: 6.61394789494625
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series forecasting (TSF) plays a crucial role in various applications, including medical monitoring and crop growth. Despite the advancements in deep learning methods for TSF, their capacity to predict long-term series remains constrained. This limitation arises from the failure to account for both intra- and inter-variable variations meanwhile. To mitigate this challenge, we introduce the Fi$^2$VBlock, which leverages a \textbf{F}requency domain perspective to capture \textbf{i}ntra- and \textbf{i}nter-variable \textbf{V}ariations. After transforming into the frequency domain via the Frequency Transform Module, the Frequency Cross Attention between the real and imaginary parts is designed to obtain enhanced frequency representations and capture intra-variable variations. Furthermore, Inception blocks are employed to integrate information, thus capturing correlations across different variables. Our backbone network, Fi$^2$VTS, employs a residual architecture by concatenating multiple Fi$^2$VBlocks, thereby preventing degradation issues. Theoretically, we demonstrate that Fi$^2$VTS achieves a substantial reduction in both time and memory complexity, decreasing from $\mathcal{O}(L^2)$ to $\mathcal{O}(L)$ per Fi$^2$VBlock computation. Empirical evaluations reveal that Fi$^2$VTS outperforms other baselines on two benchmark datasets. The implementation code is accessible at \url{https://github.com/HITshenrj/Fi2VTS}.
Related papers
- A Statistical Analysis of Deep Federated Learning for Intrinsically Low-dimensional Data [32.98264375121064]
Federated Learning (FL) has emerged as a groundbreaking paradigm in collaborative machine learning.
This paper investigates the generalization properties of deep federated regression within a two-stage sampling model.
arXiv Detail & Related papers (2024-10-28T01:36:25Z) - Online Learning and Information Exponents: On The Importance of Batch size, and Time/Complexity Tradeoffs [24.305423716384272]
We study the impact of the batch size on the iteration time $T$ of training two-layer neural networks with one-pass gradient descent (SGD)
We show that performing gradient updates with large batches minimizes the training time without changing the total sample complexity.
We show that one can track the training progress by a system of low-dimensional ordinary differential equations (ODEs)
arXiv Detail & Related papers (2024-06-04T09:44:49Z) - Leveraging 2D Information for Long-term Time Series Forecasting with Vanilla Transformers [55.475142494272724]
Time series prediction is crucial for understanding and forecasting complex dynamics in various domains.
We introduce GridTST, a model that combines the benefits of two approaches using innovative multi-directional attentions.
The model consistently delivers state-of-the-art performance across various real-world datasets.
arXiv Detail & Related papers (2024-05-22T16:41:21Z) - TSLANet: Rethinking Transformers for Time Series Representation Learning [19.795353886621715]
Time series data is characterized by its intrinsic long and short-range dependencies.
We introduce a novel Time Series Lightweight Network (TSLANet) as a universal convolutional model for diverse time series tasks.
Our experiments demonstrate that TSLANet outperforms state-of-the-art models in various tasks spanning classification, forecasting, and anomaly detection.
arXiv Detail & Related papers (2024-04-12T13:41:29Z) - CARD: Channel Aligned Robust Blend Transformer for Time Series
Forecasting [50.23240107430597]
We design a special Transformer, i.e., Channel Aligned Robust Blend Transformer (CARD for short), that addresses key shortcomings of CI type Transformer in time series forecasting.
First, CARD introduces a channel-aligned attention structure that allows it to capture both temporal correlations among signals.
Second, in order to efficiently utilize the multi-scale knowledge, we design a token blend module to generate tokens with different resolutions.
Third, we introduce a robust loss function for time series forecasting to alleviate the potential overfitting issue.
arXiv Detail & Related papers (2023-05-20T05:16:31Z) - SViTT: Temporal Learning of Sparse Video-Text Transformers [65.93031164906812]
We propose SViTT, a sparse video-text architecture that performs multi-frame reasoning with significantly lower cost than naive transformers with dense attention.
SViTT employs two forms of sparsity: edge sparsity that limits the query-key communications between tokens in self-attention, and sparsity that discards uninformative visual tokens.
arXiv Detail & Related papers (2023-04-18T08:17:58Z) - FeDXL: Provable Federated Learning for Deep X-Risk Optimization [105.17383135458897]
We tackle a novel federated learning (FL) problem for optimizing a family of X-risks, to which no existing algorithms are applicable.
The challenges for designing an FL algorithm for X-risks lie in the non-decomability of the objective over multiple machines and the interdependency between different machines.
arXiv Detail & Related papers (2022-10-26T00:23:36Z) - TimesNet: Temporal 2D-Variation Modeling for General Time Series
Analysis [80.56913334060404]
Time series analysis is of immense importance in applications, such as weather forecasting, anomaly detection, and action recognition.
Previous methods attempt to accomplish this directly from the 1D time series.
We ravel out the complex temporal variations into the multiple intraperiod- and interperiod-variations.
arXiv Detail & Related papers (2022-10-05T12:19:51Z) - Long-term Leap Attention, Short-term Periodic Shift for Video
Classification [41.87505528859225]
Video transformer naturally incurs a heavier computation burden than a static vision transformer.
We propose the LAPS, a long-term textbftextitLeap Attention'' (LAN), short-term textbftextitPeriodic Shift'' (textitP-Shift) module for video transformers.
arXiv Detail & Related papers (2022-07-12T13:30:15Z) - On Multivariate Singular Spectrum Analysis and its Variants [23.517864567789353]
We introduce and analyze a variant of multivariate singular analysis (mSSA), a popular time series method.
We establish prediction mean-squared-error for both imputation and out-of-sample forecasting effectively as $1 / sqrtmin(N, T )T$.
On benchmark datasets, our variant of mSSA performs competitively with state-of-the-art neural-network time series methods.
arXiv Detail & Related papers (2020-06-24T03:17:01Z) - A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian
Kernel, a Precise Phase Transition, and the Corresponding Double Descent [85.77233010209368]
This article characterizes the exacts of random Fourier feature (RFF) regression, in the realistic setting where the number of data samples $n$ is all large and comparable.
This analysis also provides accurate estimates of training and test regression errors for large $n,p,N$.
arXiv Detail & Related papers (2020-06-09T02:05:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.