Multi-Purpose Architecture for Fast Reset and Protective Readout of Superconducting Qubits
- URL: http://arxiv.org/abs/2407.21332v1
- Date: Wed, 31 Jul 2024 04:44:40 GMT
- Title: Multi-Purpose Architecture for Fast Reset and Protective Readout of Superconducting Qubits
- Authors: Jiayu Ding, Yulong Li, He Wang, Guangming Xue, Tang Su, Chenlu Wang, Weijie Sun, Feiyu Li, Yujia Zhang, Yang Gao, Jun Peng, Zhi Hao Jiang, Yang Yu, Haifeng Yu, Fei Yan,
- Abstract summary: We present a novel multi-purpose architecture that enables fast reset and protection of superconducting qubits during control and readout.
In our design, two on-chip diplexers are connected by two transmission lines. The high-pass branch provides a flat passband for convenient allocation of readout resonators above the qubit frequencies.
We demonstrate resetting a transmon qubit from its first excited state to the ground state in 100 ns, achieving a residual population of 2.7%, mostly limited by the thermal effect.
- Score: 25.833934622405998
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to fast reset a qubit state is crucial for quantum information processing. However, to actively reset a qubit requires engineering a pathway to interact with a dissipative bath, which often comes with the cost of reduced qubit protection from the environment. Here, we present a novel multi-purpose architecture that enables fast reset and protection of superconducting qubits during control and readout. In our design, two on-chip diplexers are connected by two transmission lines. The high-pass branch provides a flat passband for convenient allocation of readout resonators above the qubit frequencies, which is preferred for reducing measurement-induced state transitions. In the low-pass branch, we leverage a standing-wave mode below the maximum qubit frequency for a rapid reset. The qubits are located in the common stopband to inhibit dissipation during coherent operations. We demonstrate resetting a transmon qubit from its first excited state to the ground state in 100 ns, achieving a residual population of 2.7%, mostly limited by the thermal effect. The reset time may be further shortened to 27 ns by exploiting the coherent population inversion effect. We further extend the technique to resetting the qubit from its second excited state. Our approach promises scalable implementation of fast reset and qubit protection during control and readout, adding to the toolbox of dissipation engineering.
Related papers
- Fast unconditional reset and leakage reduction in fixed-frequency transmon qubits [5.648269866084686]
We show a protocol capable of implementing both qubit reset and leakage reduction.
In total, the combination of qubit reset, leakage reduction, and coupler reset takes only 83ns to complete.
Our protocol also provides a means to both reduce QEC cycle runtime and improve algorithmic fidelity on quantum computers.
arXiv Detail & Related papers (2024-09-25T08:57:41Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
A superconducting qubit is coupled to a large-bandwidth readout resonator.
We show a beyond-state-of-the-art two-state-readout error of only 0.25,%$ in 100 ns integration time.
The presented results are expected to further boost the performance of new and existing algorithms and protocols.
arXiv Detail & Related papers (2023-07-15T10:30:10Z) - Circuit Cutting with Non-Maximally Entangled States [59.11160990637615]
Distributed quantum computing combines the computational power of multiple devices to overcome the limitations of individual devices.
circuit cutting techniques enable the distribution of quantum computations through classical communication.
Quantum teleportation allows the distribution of quantum computations without an exponential increase in shots.
We propose a novel circuit cutting technique that leverages non-maximally entangled qubit pairs.
arXiv Detail & Related papers (2023-06-21T08:03:34Z) - Qubit readouts enabled by qubit cloaking [49.1574468325115]
Time-dependent drives play a crucial role in quantum computing efforts.
They enable single-qubit control, entangling logical operations, as well as qubit readout.
Qubit cloaking was introduced in Lled'o, Dassonneville, et al.
arXiv Detail & Related papers (2023-05-01T15:58:25Z) - Two qubits in one transmon -- QEC without ancilla hardware [68.8204255655161]
We show that it is theoretically possible to use higher energy levels for storing and controlling two qubits within a superconducting transmon.
The additional qubits could be used in algorithms which need many short-living qubits in error correction or by embedding effecitve higher connectivity in qubit networks.
arXiv Detail & Related papers (2023-02-28T16:18:00Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Moving beyond the transmon: Noise-protected superconducting quantum
circuits [55.49561173538925]
superconducting circuits offer opportunities to store and process quantum information with high fidelity.
Noise-protected devices constitute a new class of qubits in which the computational states are largely decoupled from local noise channels.
This Perspective reviews the theoretical principles at the heart of these new qubits, describes recent experiments, and highlights the potential of robust encoding of quantum information in superconducting qubits.
arXiv Detail & Related papers (2021-06-18T18:00:13Z) - Rapid and Unconditional Parametric Reset Protocol for Tunable
Superconducting Qubits [12.429990467686526]
We report a fast and high-fidelity reset scheme for qubits in quantum computing.
By modulating the flux through a transmon qubit, we realize a swap between the qubit and its readout resonator.
Our approach can achieve effective second excited state depletion, (ii) has negligible effects on neighbouring qubits, and (iii) offers a way to entangle the qubit with an itinerant single photon.
arXiv Detail & Related papers (2021-03-21T06:22:59Z) - Breaking the trade-off between fast control and long lifetime of a
superconducting qubit [0.2770822269241974]
A second superconducting qubit is strongly coupling along the control line.
This second qubit prevents the qubit from emitting microwave photons and thus suppresses its relaxation.
We observe an improvement of the qubit relaxation time without a reduction of the Rabi frequency.
This device could potentially help in the realization of a large-scale superconducting quantum information processor.
arXiv Detail & Related papers (2020-02-05T04:39:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.