論文の概要: Force Sensing Guided Artery-Vein Segmentation via Sequential Ultrasound Images
- arxiv url: http://arxiv.org/abs/2407.21394v1
- Date: Wed, 31 Jul 2024 07:32:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 18:32:01.715800
- Title: Force Sensing Guided Artery-Vein Segmentation via Sequential Ultrasound Images
- Title(参考訳): 逐次超音波画像による動脈-静脈分画の強制センシング
- Authors: Yimeng Geng, Gaofeng Meng, Mingcong Chen, Guanglin Cao, Mingyang Zhao, Jianbo Zhao, Hongbin Liu,
- Abstract要約: 本研究は,動脈-静脈間分節精度を高めるために,新しい力覚誘導分節法を提案する。
提案手法は,超音波画像の列において,最も顕著な血管変形を伴う鍵フレームの同定に力量を用いる。
負荷と画像データの両方を同時に含む最初のマルチモーダル超音波静脈分割データセットMus-Vをコントリビュートする。
- 参考スコア(独自算出の注目度): 14.349652168367767
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate identification of arteries and veins in ultrasound images is crucial for vascular examinations and interventions in robotics-assisted surgeries. However, current methods for ultrasound vessel segmentation face challenges in distinguishing between arteries and veins due to their morphological similarities. To address this challenge, this study introduces a novel force sensing guided segmentation approach to enhance artery-vein segmentation accuracy by leveraging their distinct deformability. Our proposed method utilizes force magnitude to identify key frames with the most significant vascular deformation in a sequence of ultrasound images. These key frames are then integrated with the current frame through attention mechanisms, with weights assigned in accordance with force magnitude. Our proposed force sensing guided framework can be seamlessly integrated into various segmentation networks and achieves significant performance improvements in multiple U-shaped networks such as U-Net, Swin-unet and Transunet. Furthermore, we contribute the first multimodal ultrasound artery-vein segmentation dataset, Mus-V, which encompasses both force and image data simultaneously. The dataset comprises 3114 ultrasound images of carotid and femoral vessels extracted from 105 videos, with corresponding force data recorded by the force sensor mounted on the US probe. Our code and dataset will be publicly available.
- Abstract(参考訳): 超音波画像における動脈と静脈の正確な同定は,血管検査や外科手術の介入に不可欠である。
しかし, 超音波血管分割法では, 形態的類似性から動脈と静脈の鑑別が困難である。
この課題に対処するため,本研究では,動脈-静脈間分節の精度を高めるための新たな力覚的分節法を提案する。
提案手法は,超音波画像の列において,最も顕著な血管変形を伴う鍵フレームの同定に力量を用いる。
これらの鍵フレームは、アテンション機構を通じて現在のフレームに統合され、力の大きさに応じて重みが割り当てられる。
提案手法は,U-Net,Swin-unet,Transunetなどの複数のU字型ネットワークにおいて,シームレスに様々なセグメントネットワークに統合可能であり,大幅な性能向上を実現している。
さらに, 超音波動脈-静脈間分節データセットMus-Vについて検討した。
このデータセットは、105のビデオから抽出された頸動脈と大腿骨の血管の超音波画像3114枚と、米国の探査機に搭載された力センサーによって記録された対応する力データからなる。
コードとデータセットは公開されます。
関連論文リスト
- Vascular Segmentation of Functional Ultrasound Images using Deep Learning [0.0]
機能的超音波(fUS)画像のための,最初のディープラーニングベースセグメンテーションツールを紹介する。
競合セグメンテーション性能を90%の精度で達成し、71%の堅牢性と0.59のIUをfUSスタックから100フレームの時間フレームで実現した。
この研究は、ローカライゼーション顕微鏡に代わる非侵襲的で費用効果の高い代替手段を提供し、fUSデータの解釈を強化し、血管機能の理解を改善している。
論文 参考訳(メタデータ) (2024-10-28T09:00:28Z) - Deep Spectral Methods for Unsupervised Ultrasound Image Interpretation [53.37499744840018]
本稿では, 超音波を応用した非教師型深層学習手法を提案する。
我々は、スペクトルグラフ理論と深層学習法を組み合わせた教師なしディープスペクトル法から重要な概念を統合する。
スペクトルクラスタリングの自己教師型トランスフォーマー機能を利用して、超音波特有のメトリクスと形状と位置の先行値に基づいて意味のあるセグメントを生成し、データセット間のセマンティック一貫性を確保する。
論文 参考訳(メタデータ) (2024-08-04T14:30:14Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Spatiotemporal Disentanglement of Arteriovenous Malformations in Digital
Subtraction Angiography [37.44819725897024]
本提案手法は, 船舶の自動分類による臨界情報を強調することにより, デジタルサブトラクション血管造影(DSA)画像シリーズを向上することを目的としている。
本法は, 臨床用DSA画像シリーズを用いて検討し, 動脈と静脈の効率的な鑑別を実証した。
論文 参考訳(メタデータ) (2024-02-15T00:29:53Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - Motion Magnification in Robotic Sonography: Enabling Pulsation-Aware
Artery Segmentation [44.868281669589194]
スキャン中の動脈セグメンテーションの精度と安定性を改善するために,新しい脈動補助セグメンテーションニューラルネットワーク(PAS-NN)を提案する。
興味のある周波数帯域内の微妙な動きを増幅し、連続したUS画像から脈動信号を抽出するために、運動倍率技術を用いる。
抽出したリアルタイム脈動情報は、米国横断画像の動脈を見つけるのに役立つ。
論文 参考訳(メタデータ) (2023-07-07T16:14:17Z) - Accelerated Intravascular Ultrasound Imaging using Deep Reinforcement
Learning [16.350568421800794]
血管内超音波(IVUS)は血管疾患の治療においてユニークな視点を提供する。
本稿では,現在の物理情報のボトルネックに対処するための深層強化学習について述べる。
論文 参考訳(メタデータ) (2022-01-24T08:33:21Z) - Voice-assisted Image Labelling for Endoscopic Ultrasound Classification
using Neural Networks [48.732863591145964]
本稿では,臨床医が提示した生音声からのEUS画像にラベルを付けるマルチモーダル畳み込みニューラルネットワークアーキテクチャを提案する。
その結果,5つのラベルを持つデータセットにおいて,画像レベルでの予測精度は76%であった。
論文 参考訳(メタデータ) (2021-10-12T21:22:24Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
受信した超音波エコーを空間画像領域にマッピングするビームフォーミングは、超音波画像形成チェーンの心臓に位置する。
現代の超音波イメージングは、強力なデジタル受信チャネル処理の革新に大きく依存している。
ディープラーニング手法は、デジタルビームフォーミングパイプラインにおいて魅力的な役割を果たす。
論文 参考訳(メタデータ) (2021-09-23T15:15:21Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。