Force Sensing Guided Artery-Vein Segmentation via Sequential Ultrasound Images
- URL: http://arxiv.org/abs/2407.21394v1
- Date: Wed, 31 Jul 2024 07:32:18 GMT
- Title: Force Sensing Guided Artery-Vein Segmentation via Sequential Ultrasound Images
- Authors: Yimeng Geng, Gaofeng Meng, Mingcong Chen, Guanglin Cao, Mingyang Zhao, Jianbo Zhao, Hongbin Liu,
- Abstract summary: This study introduces a novel force sensing guided segmentation approach to enhance artery-vein segmentation accuracy.
Our proposed method utilizes force magnitude to identify key frames with the most significant vascular deformation in a sequence of ultrasound images.
We contribute the first multimodal ultrasound artery-vein segmentation dataset, Mus-V, which encompasses both force and image data simultaneously.
- Score: 14.349652168367767
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate identification of arteries and veins in ultrasound images is crucial for vascular examinations and interventions in robotics-assisted surgeries. However, current methods for ultrasound vessel segmentation face challenges in distinguishing between arteries and veins due to their morphological similarities. To address this challenge, this study introduces a novel force sensing guided segmentation approach to enhance artery-vein segmentation accuracy by leveraging their distinct deformability. Our proposed method utilizes force magnitude to identify key frames with the most significant vascular deformation in a sequence of ultrasound images. These key frames are then integrated with the current frame through attention mechanisms, with weights assigned in accordance with force magnitude. Our proposed force sensing guided framework can be seamlessly integrated into various segmentation networks and achieves significant performance improvements in multiple U-shaped networks such as U-Net, Swin-unet and Transunet. Furthermore, we contribute the first multimodal ultrasound artery-vein segmentation dataset, Mus-V, which encompasses both force and image data simultaneously. The dataset comprises 3114 ultrasound images of carotid and femoral vessels extracted from 105 videos, with corresponding force data recorded by the force sensor mounted on the US probe. Our code and dataset will be publicly available.
Related papers
- Vascular Segmentation of Functional Ultrasound Images using Deep Learning [0.0]
We introduce the first deep learning-based segmentation tool for functional ultrasound (fUS) images.
We achieve competitive segmentation performance, with 90% accuracy, with 71% robustness and an IU of 0.59, using only 100 temporal frames from a fUS stack.
This work offers a non-invasive, cost-effective alternative to localization microscopy, enhancing fUS data interpretation and improving understanding of vessel function.
arXiv Detail & Related papers (2024-10-28T09:00:28Z) - Deep Spectral Methods for Unsupervised Ultrasound Image Interpretation [53.37499744840018]
This paper proposes a novel unsupervised deep learning strategy tailored to ultrasound to obtain easily interpretable tissue separations.
We integrate key concepts from unsupervised deep spectral methods, which combine spectral graph theory with deep learning methods.
We utilize self-supervised transformer features for spectral clustering to generate meaningful segments based on ultrasound-specific metrics and shape and positional priors, ensuring semantic consistency across the dataset.
arXiv Detail & Related papers (2024-08-04T14:30:14Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Spatiotemporal Disentanglement of Arteriovenous Malformations in Digital
Subtraction Angiography [37.44819725897024]
The presented method aims to enhance Digital Subtraction Angiography (DSA) image series by highlighting critical information via automatic classification of vessels.
The method was tested on clinical DSA images series and demonstrated efficient differentiation between arteries and veins.
arXiv Detail & Related papers (2024-02-15T00:29:53Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Motion Magnification in Robotic Sonography: Enabling Pulsation-Aware
Artery Segmentation [44.868281669589194]
In order to improve the artery segmentation accuracy and stability during scans, this work presents a novel pulsation-assisted segmentation neural network (PAS-NN)
Motion magnification techniques are employed to amplify the subtle motion within the frequency band of interest to extract the pulsation signals from sequential US images.
The extracted real-time pulsation information can help to locate the arteries on cross-section US images.
arXiv Detail & Related papers (2023-07-07T16:14:17Z) - Accelerated Intravascular Ultrasound Imaging using Deep Reinforcement
Learning [16.350568421800794]
Intravascular ultrasound (IVUS) offers a unique perspective in the treatment of vascular diseases.
We present the use of deep reinforcement learning to deal with the current physical information bottleneck.
arXiv Detail & Related papers (2022-01-24T08:33:21Z) - Voice-assisted Image Labelling for Endoscopic Ultrasound Classification
using Neural Networks [48.732863591145964]
We propose a multi-modal convolutional neural network architecture that labels endoscopic ultrasound (EUS) images from raw verbal comments provided by a clinician during the procedure.
Our results show a prediction accuracy of 76% at image level on a dataset with 5 different labels.
arXiv Detail & Related papers (2021-10-12T21:22:24Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
Beamforming, the process of mapping received ultrasound echoes to the spatial image domain, lies at the heart of the ultrasound image formation chain.
Modern ultrasound imaging leans heavily on innovations in powerful digital receive channel processing.
Deep learning methods can play a compelling role in the digital beamforming pipeline.
arXiv Detail & Related papers (2021-09-23T15:15:21Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.