Benchmarking Multi-dimensional AIGC Video Quality Assessment: A Dataset and Unified Model
- URL: http://arxiv.org/abs/2407.21408v2
- Date: Thu, 26 Dec 2024 03:21:00 GMT
- Title: Benchmarking Multi-dimensional AIGC Video Quality Assessment: A Dataset and Unified Model
- Authors: Zhichao Zhang, Wei Sun, Xinyue Li, Jun Jia, Xiongkuo Min, Zicheng Zhang, Chunyi Li, Zijian Chen, Puyi Wang, Fengyu Sun, Shangling Jui, Guangtao Zhai,
- Abstract summary: We investigate the AIGC-VQA problem, considering both subjective and objective quality assessment perspectives.
For the subjective perspective, we construct the Large-scale Generated Video Quality assessment (LGVQ) dataset, consisting of 2,808 AIGC videos.
We evaluate the perceptual quality of AIGC videos from three critical dimensions: spatial quality, temporal quality, and text-video alignment.
We propose the Unify Generated Video Quality assessment (UGVQ) model, designed to accurately evaluate the multi-dimensional quality of AIGC videos.
- Score: 56.03592388332793
- License:
- Abstract: In recent years, artificial intelligence (AI)-driven video generation has gained significant attention. Consequently, there is a growing need for accurate video quality assessment (VQA) metrics to evaluate the perceptual quality of AI-generated content (AIGC) videos and optimize video generation models. However, assessing the quality of AIGC videos remains a significant challenge because these videos often exhibit highly complex distortions, such as unnatural actions and irrational objects. To address this challenge, we systematically investigate the AIGC-VQA problem, considering both subjective and objective quality assessment perspectives. For the subjective perspective, we construct the Large-scale Generated Video Quality assessment (LGVQ) dataset, consisting of 2,808 AIGC videos generated by 6 video generation models using 468 carefully curated text prompts. We evaluate the perceptual quality of AIGC videos from three critical dimensions: spatial quality, temporal quality, and text-video alignment. For the objective perspective, we establish a benchmark for evaluating existing quality assessment metrics on the LGVQ dataset. Our findings show that current metrics perform poorly on this dataset, highlighting a gap in effective evaluation tools. To bridge this gap, we propose the Unify Generated Video Quality assessment (UGVQ) model, designed to accurately evaluate the multi-dimensional quality of AIGC videos. The UGVQ model integrates the visual and motion features of videos with the textual features of their corresponding prompts, forming a unified quality-aware feature representation tailored to AIGC videos. Experimental results demonstrate that UGVQ achieves state-of-the-art performance on the LGVQ dataset across all three quality dimensions. Both the LGVQ dataset and the UGVQ model are publicly available on https://github.com/zczhang-sjtu/UGVQ.git.
Related papers
- FineVQ: Fine-Grained User Generated Content Video Quality Assessment [57.51274708410407]
We establish the first large-scale Fine-grained Video quality assessment Database, termed FineVD, which comprises 6104 videos with fine-grained quality scores and descriptions across multiple dimensions.
We propose a Fine-grained Video Quality assessment (FineVQ) model to learn the fine-grained quality of videos, with the capabilities of quality rating, quality scoring, and quality attribution.
arXiv Detail & Related papers (2024-12-26T14:44:47Z) - AIGV-Assessor: Benchmarking and Evaluating the Perceptual Quality of Text-to-Video Generation with LMM [54.44479359918971]
We first present AIGVQA-DB, a large-scale dataset comprising 36,576 AIGVs generated by 15 advanced text-to-video models using 1,048 prompts.
We then introduce AIGV-Assessor, a novel VQA model that leverages intricate quality attributes to capture precise video quality scores and pair video preferences.
arXiv Detail & Related papers (2024-11-26T08:43:15Z) - VQA$^2$: Visual Question Answering for Video Quality Assessment [76.81110038738699]
Video Quality Assessment (VQA) is a classic field in low-level visual perception.
Recent studies in the image domain have demonstrated that Visual Question Answering (VQA) can enhance markedly low-level visual quality evaluation.
We introduce the VQA2 Instruction dataset - the first visual question answering instruction dataset that focuses on video quality assessment.
The VQA2 series models interleave visual and motion tokens to enhance the perception of spatial-temporal quality details in videos.
arXiv Detail & Related papers (2024-11-06T09:39:52Z) - Quality Prediction of AI Generated Images and Videos: Emerging Trends and Opportunities [32.03360188710995]
AI-generated and enhanced content must be visually accurate, adhere to intended use, and maintain high visual quality.
One way to monitor and control the visual "quality" of AI-generated and -enhanced content is by deploying Image Quality Assessment (IQA) and Video Quality Assessment (VQA) models.
This paper examines the current shortcomings and possibilities presented by AI-generated and enhanced image and video content.
arXiv Detail & Related papers (2024-10-11T05:08:44Z) - Exploring AIGC Video Quality: A Focus on Visual Harmony, Video-Text Consistency and Domain Distribution Gap [4.922783970210658]
We categorize the assessment of AIGC video quality into three dimensions: visual harmony, video-text consistency, and domain distribution gap.
For each dimension, we design specific modules to provide a comprehensive quality assessment of AIGC videos.
Our research identifies significant variations in visual quality, fluidity, and style among videos generated by different text-to-video models.
arXiv Detail & Related papers (2024-04-21T08:27:20Z) - Subjective-Aligned Dataset and Metric for Text-to-Video Quality Assessment [54.00254267259069]
We establish the largest-scale Text-to-Video Quality Assessment DataBase (T2VQA-DB) to date.
The dataset is composed of 10,000 videos generated by 9 different T2V models.
We propose a novel transformer-based model for subjective-aligned Text-to-Video Quality Assessment (T2VQA)
arXiv Detail & Related papers (2024-03-18T16:52:49Z) - UGC-VQA: Benchmarking Blind Video Quality Assessment for User Generated
Content [59.13821614689478]
Blind quality prediction of in-the-wild videos is quite challenging, since the quality degradations of content are unpredictable, complicated, and often commingled.
Here we contribute to advancing the problem by conducting a comprehensive evaluation of leading VQA models.
By employing a feature selection strategy on top of leading VQA model features, we are able to extract 60 of the 763 statistical features used by the leading models.
Our experimental results show that VIDEVAL achieves state-of-theart performance at considerably lower computational cost than other leading models.
arXiv Detail & Related papers (2020-05-29T00:39:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.