論文の概要: Cost-Effective Hallucination Detection for LLMs
- arxiv url: http://arxiv.org/abs/2407.21424v2
- Date: Fri, 9 Aug 2024 11:58:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-12 17:59:25.731241
- Title: Cost-Effective Hallucination Detection for LLMs
- Title(参考訳): LLMのコスト効果型幻覚検出
- Authors: Simon Valentin, Jinmiao Fu, Gianluca Detommaso, Shaoyuan Xu, Giovanni Zappella, Bryan Wang,
- Abstract要約: 大規模な言語モデル(LLM)は幻覚を起こす傾向があり、入力、外部事実、あるいは内部的矛盾に反する信頼できない出力を生成する。
幻覚検出のためのパイプラインでは,まず,生成した回答が幻覚である可能性を示す信頼スコアを生成し,第2に,入力の属性と候補応答に基づいてスコア条件を調整し,第3に,スコアを閾値付けして検出を行う。
- 参考スコア(独自算出の注目度): 11.58436181159839
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) can be prone to hallucinations - generating unreliable outputs that are unfaithful to their inputs, external facts or internally inconsistent. In this work, we address several challenges for post-hoc hallucination detection in production settings. Our pipeline for hallucination detection entails: first, producing a confidence score representing the likelihood that a generated answer is a hallucination; second, calibrating the score conditional on attributes of the inputs and candidate response; finally, performing detection by thresholding the calibrated score. We benchmark a variety of state-of-the-art scoring methods on different datasets, encompassing question answering, fact checking, and summarization tasks. We employ diverse LLMs to ensure a comprehensive assessment of performance. We show that calibrating individual scoring methods is critical for ensuring risk-aware downstream decision making. Based on findings that no individual score performs best in all situations, we propose a multi-scoring framework, which combines different scores and achieves top performance across all datasets. We further introduce cost-effective multi-scoring, which can match or even outperform more expensive detection methods, while significantly reducing computational overhead.
- Abstract(参考訳): 大規模な言語モデル(LLM)は幻覚を起こす傾向があり、入力、外部事実、あるいは内部的矛盾に反する信頼できない出力を生成する。
本研究では,生産環境下での幻覚後検出におけるいくつかの課題に対処する。
まず、生成した回答が幻覚である可能性を示す信頼スコアを生成し、次に、入力の属性と候補応答に基づいてスコア条件を校正し、最後に、校正されたスコアを閾値付けして検出する。
我々は,質問応答,事実確認,要約タスクを含む,さまざまなデータセットに対する最先端評価手法をベンチマークする。
性能の総合的な評価を確保するため,多種多様なLCMを用いている。
個別の採点方法の校正は、下流の意思決定にリスクを意識する上で重要であることを示す。
個々のスコアがすべての状況で最高のパフォーマンスを発揮できないという知見に基づいて、異なるスコアを組み合わせて、すべてのデータセットで最高のパフォーマンスを達成するマルチスコアフレームワークを提案する。
さらに、コスト効率の良いマルチスコーリングを導入し、計算オーバーヘッドを大幅に削減しつつ、より高価な検出方法に適合したり、性能を向上したりすることができる。
関連論文リスト
- Sample-agnostic Adversarial Perturbation for Vision-Language Pre-training Models [7.350203999073509]
AIセキュリティに関する最近の研究は、画像やテキストの微妙で意図的に設計された摂動に対するビジョンランゲージ事前学習モデルの脆弱性を強調している。
私たちの知る限りでは、どんな画像にも当てはまる普遍的でサンプルに依存しない摂動の生成を探索する、マルチモーダルな決定境界による最初の研究である。
論文 参考訳(メタデータ) (2024-08-06T06:25:39Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z) - HypoTermQA: Hypothetical Terms Dataset for Benchmarking Hallucination
Tendency of LLMs [0.0]
幻覚は、大規模言語モデル(LLM)の信頼性と整合性に重大な課題をもたらす
本稿では,LLMの幻覚傾向のベンチマークと効率的な幻覚検出を組み合わせた,スケーラブルな自動フレームワークを提案する。
フレームワークはドメインに依存しないため、任意のドメインでのベンチマーク作成や評価に任意の言語モデルを使用することができる。
論文 参考訳(メタデータ) (2024-02-25T22:23:37Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
オープンエンド生成タスクをトークンレベルの予測タスクに再構成する。
我々はLSMに答えを自己評価するように指示する。
自己評価に基づくスコアリング手法をベンチマークする。
論文 参考訳(メタデータ) (2023-12-14T19:09:22Z) - Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus [99.33091772494751]
大規模言語モデル(LLM)は、様々な分野にわたる印象的なパフォーマンスで大きな人気を集めている。
LLMは、ユーザの期待を満たさない非現実的あるいは非感覚的なアウトプットを幻覚させる傾向がある。
LLMにおける幻覚を検出するための新しい基準のない不確実性に基づく手法を提案する。
論文 参考訳(メタデータ) (2023-11-22T08:39:17Z) - Chainpoll: A high efficacy method for LLM hallucination detection [0.0]
そこで我々はChainPollという幻覚検出手法を紹介した。
我々はまた、最近の研究から幻覚検出指標を評価するためのベンチマークデータセットの洗練されたコレクションであるRealHallも公開した。
論文 参考訳(メタデータ) (2023-10-22T14:45:14Z) - FactCHD: Benchmarking Fact-Conflicting Hallucination Detection [64.4610684475899]
FactCHD は LLM からファクトコンフリクトの幻覚を検出するために設計されたベンチマークである。
FactCHDは、バニラ、マルチホップ、比較、セット操作など、さまざまな事実パターンにまたがる多様なデータセットを備えている。
Llama2 に基づくツール強化 ChatGPT と LoRA-tuning による反射的考察を合成する Truth-Triangulator を提案する。
論文 参考訳(メタデータ) (2023-10-18T16:27:49Z) - A New Benchmark and Reverse Validation Method for Passage-level
Hallucination Detection [63.56136319976554]
大きな言語モデル(LLM)は幻覚を発生させ、ミッションクリティカルなタスクにデプロイすると大きなダメージを与える可能性がある。
本稿では,逆検証に基づく自己チェック手法を提案し,ゼロリソース方式で事実誤りを自動的に検出する。
提案手法と既存のゼロリソース検出手法を2つのデータセット上で実証的に評価した。
論文 参考訳(メタデータ) (2023-10-10T10:14:59Z) - Detecting Hallucinated Content in Conditional Neural Sequence Generation [165.68948078624499]
出力シーケンスの各トークンが(入力に含まれていない)幻覚化されているかどうかを予測するタスクを提案する。
また、合成データに微調整された事前学習言語モデルを用いて幻覚を検出する方法についても紹介する。
論文 参考訳(メタデータ) (2020-11-05T00:18:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。