論文の概要: Enriching thermal point clouds of buildings using semantic 3D building modelsenriching thermal point clouds of buildings using semantic 3D building models
- arxiv url: http://arxiv.org/abs/2407.21436v1
- Date: Wed, 31 Jul 2024 08:38:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 18:22:17.992008
- Title: Enriching thermal point clouds of buildings using semantic 3D building modelsenriching thermal point clouds of buildings using semantic 3D building models
- Title(参考訳): セマンティック3次元ビルディングモデルを用いた建物の熱点雲の濃縮
- Authors: Jingwei Zhu, Olaf Wysocki, Christoph Holst, Thomas H. Kolbe,
- Abstract要約: 本稿では,LoD3ビルディングモデルのジオポジションとセマンティクスを用いて,熱点雲を豊かにするワークフローを提案する。
提案手法は, 異なる音源からの点群を自動的に登録し, サーマル点群をファサード詳細セマンティクスで強化する。
- 参考スコア(独自算出の注目度): 0.8624680612413766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Thermal point clouds integrate thermal radiation and laser point clouds effectively. However, the semantic information for the interpretation of building thermal point clouds can hardly be precisely inferred. Transferring the semantics encapsulated in 3D building models at LoD3 has a potential to fill this gap. In this work, we propose a workflow enriching thermal point clouds with the geo-position and semantics of LoD3 building models, which utilizes features of both modalities: The proposed method can automatically co-register the point clouds from different sources and enrich the thermal point cloud in facade-detailed semantics. The enriched thermal point cloud supports thermal analysis and can facilitate the development of currently scarce deep learning models operating directly on thermal point clouds.
- Abstract(参考訳): 熱点雲は熱放射とレーザー点雲を効果的に統合する。
しかし、熱点雲の構築を解釈するための意味情報は正確には推測できない。
LoD3で3Dビルディングモデルにカプセル化されたセマンティクスの転送は、このギャップを埋める可能性がある。
本研究は,LoD3ビルディングモデルのジオポジションとセマンティクスを用いて,熱点雲を濃縮するワークフローを提案する。
濃縮された熱点雲は熱解析をサポートし、現在少ない深層学習モデルの開発を熱点雲上で直接行うことができる。
関連論文リスト
- ESP-Zero: Unsupervised enhancement of zero-shot classification for Extremely Sparse Point cloud [7.066196862701362]
極端に疎い点群に対する点群エンコーダを強化するための教師なしモデル適応手法を提案する。
本稿では,学習可能なトークンとアテンションブロックを追加して,事前学習した自己注意層を拡張する,新しいファセットクロスアテンション層を提案する。
また,無関係なテキスト埋め込みから,修正された特徴を引き離すための補完的な学習ベースの自己蒸留スキーマを提案する。
論文 参考訳(メタデータ) (2024-04-30T15:42:45Z) - PointDifformer: Robust Point Cloud Registration With Neural Diffusion and Transformer [31.02661827570958]
ポイントクラウド登録は、3Dコンピュータビジョンにおける基本的な技術であり、グラフィック、自律運転、ロボット工学の応用がある。
本稿では,グラフニューラル偏微分方程式(PDE)と熱カーネルシグネチャを利用するロバストポイントクラウド登録手法を提案する。
3Dポイントクラウドデータセットの実証実験により、我々のアプローチは、ポイントクラウド登録のための最先端のパフォーマンスを達成するだけでなく、付加的なノイズや3D形状の摂動に対してより堅牢性を示すことを示した。
論文 参考訳(メタデータ) (2024-04-22T09:50:12Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNetは、マッピングネットワークを使用して高忠実度および3Dポイントクラウドを再構築し、生成することができる。
我々のフレームワークは、クラウドの再構築と生成タスクにおいて、様々なメトリクスで同等の最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2023-03-28T08:21:44Z) - Combining visibility analysis and deep learning for refinement of
semantic 3D building models by conflict classification [3.2662392450935416]
本稿では,3次元モデルと窓とドアの特徴を統合化するための可視性解析とニューラルネットワークを組み合わせる手法を提案する。
この方法では、占有するボクセルは分類された点雲で融合され、ボクセルに意味を与える。
セマンティックボクセルとコンフリクトはベイズネットワークに組み合わされ、3Dモデルライブラリを用いて再構成されたファサード開口の分類と記述を行う。
論文 参考訳(メタデータ) (2023-03-10T16:01:30Z) - EPCL: Frozen CLIP Transformer is An Efficient Point Cloud Encoder [60.52613206271329]
本稿では,冷凍CLIP変換器を用いて高品質のクラウドモデルをトレーニングするための textbfEfficient textbfPoint textbfCloud textbfLearning (EPCL) を提案する。
我々のEPCLは、2D-3Dデータをペア化せずに画像の特徴と点雲の特徴を意味的に整合させることで、2Dと3Dのモダリティを接続する。
論文 参考訳(メタデータ) (2022-12-08T06:27:11Z) - Point-Syn2Real: Semi-Supervised Synthetic-to-Real Cross-Domain Learning
for Object Classification in 3D Point Clouds [14.056949618464394]
LiDAR 3Dポイントクラウドデータを用いたオブジェクト分類は、自律運転のような現代的なアプリケーションにとって重要である。
本稿では,ポイントクラウドのマニュアルアノテーションに依存しない半教師付きクロスドメイン学習手法を提案する。
我々は、ポイントクラウド上でのクロスドメイン学習のための新しいベンチマークデータセットであるPoint-Syn2Realを紹介した。
論文 参考訳(メタデータ) (2022-10-31T01:53:51Z) - A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud
Completion [69.32451612060214]
実スキャンされた3Dポイントクラウドはしばしば不完全であり、下流アプリケーションのために完全なポイントクラウドを復元することが重要である。
ほとんどの既存のポイントクラウド補完方法は、トレーニングにチャンファー距離(CD)損失を使用する。
本稿では,点雲完了のためのPDR(Point Diffusion-Refinement)パラダイムを提案する。
論文 参考訳(メタデータ) (2021-12-07T06:59:06Z) - Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation
and Spatial Supervision [68.35777836993212]
我々はPseudo-LiDAR点雲ネットワークを提案し、時間的および空間的に高品質な点雲列を生成する。
点雲間のシーンフローを活用することにより,提案ネットワークは3次元空間運動関係のより正確な表現を学習することができる。
論文 参考訳(メタデータ) (2020-06-20T03:11:04Z) - GRNet: Gridding Residual Network for Dense Point Cloud Completion [54.43648460932248]
完全な3Dポイントクラウドを不完全なクラウドから推定することは、多くのビジョンやロボティクスアプリケーションにおいて重要な問題である。
本稿では,ポイントクラウド補完のための新しいGridding Residual Network(GRNet)を提案する。
実験結果から,提案したGRNetはShapeNet,Completion3D,KITTIベンチマークの最先端手法に対して良好に動作することがわかった。
論文 参考訳(メタデータ) (2020-06-06T02:46:39Z) - Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets
for 3D Generation, Reconstruction and Classification [136.57669231704858]
エネルギーモデルを用いて, 点雲などの無秩序点集合の生成モデルを提案する。
我々はこのモデルをジェネレーティブ・ポイントネット(Generative PointNet)と呼んでいる。
論文 参考訳(メタデータ) (2020-04-02T23:08:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。