Maverick: Efficient and Accurate Coreference Resolution Defying Recent Trends
- URL: http://arxiv.org/abs/2407.21489v1
- Date: Wed, 31 Jul 2024 09:58:48 GMT
- Title: Maverick: Efficient and Accurate Coreference Resolution Defying Recent Trends
- Authors: Giuliano Martinelli, Edoardo Barba, Roberto Navigli,
- Abstract summary: Large autoregressive generative models have emerged as the cornerstone for achieving the highest performance across several Natural Language Processing tasks.
We introduce Maverick, a pipeline that enables running a state-of-the-art Coreference Resolution system within the constraints of an academic budget.
Maverick achieves state-of-the-art performance on the CoNLL-2012 benchmark, training with up to 0.006x the memory resources and obtaining a 170x faster inference compared to previous state-of-the-art systems.
- Score: 49.68011233558541
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large autoregressive generative models have emerged as the cornerstone for achieving the highest performance across several Natural Language Processing tasks. However, the urge to attain superior results has, at times, led to the premature replacement of carefully designed task-specific approaches without exhaustive experimentation. The Coreference Resolution task is no exception; all recent state-of-the-art solutions adopt large generative autoregressive models that outperform encoder-based discriminative systems. In this work,we challenge this recent trend by introducing Maverick, a carefully designed - yet simple - pipeline, which enables running a state-of-the-art Coreference Resolution system within the constraints of an academic budget, outperforming models with up to 13 billion parameters with as few as 500 million parameters. Maverick achieves state-of-the-art performance on the CoNLL-2012 benchmark, training with up to 0.006x the memory resources and obtaining a 170x faster inference compared to previous state-of-the-art systems. We extensively validate the robustness of the Maverick framework with an array of diverse experiments, reporting improvements over prior systems in data-scarce, long-document, and out-of-domain settings. We release our code and models for research purposes at https://github.com/SapienzaNLP/maverick-coref.
Related papers
- Sample, Don't Search: Rethinking Test-Time Alignment for Language Models [55.2480439325792]
We introduce QAlign, a new test-time alignment approach.
As we scale test-time compute, QAlign converges to sampling from the optimal aligned distribution for each individual prompt.
By adopting recent advances in Markov chain Monte Carlo for text generation, our method enables better-aligned outputs without modifying the underlying model or even requiring logit access.
arXiv Detail & Related papers (2025-04-04T00:41:40Z) - Reinforced Model Merging [53.84354455400038]
We present an innovative framework termed Reinforced Model Merging (RMM), which encompasses an environment and agent tailored for merging tasks.<n>By utilizing data subsets during the evaluation process, we addressed the bottleneck in the reward feedback phase, thereby accelerating RMM by up to 100 times.
arXiv Detail & Related papers (2025-03-27T08:52:41Z) - Learning to Solve and Verify: A Self-Play Framework for Code and Test Generation [69.62857948698436]
Recent advances in large language models (LLMs) have improved their performance on coding benchmarks.
However, improvement is plateauing due to the exhaustion of readily available high-quality data.
We propose Sol-Ver, a self-play solver-verifier framework that jointly improves a single model's code and test generation capacity.
arXiv Detail & Related papers (2025-02-20T18:32:19Z) - Selective Task offloading for Maximum Inference Accuracy and Energy
efficient Real-Time IoT Sensing Systems [3.0748861313823]
We propose a lightweight hybrid genetic algorithm (LGSTO) to solve the multidimensional knapsack problem.
Experiment results show that LGSTO performed 3 times faster than the fastest comparable schemes.
arXiv Detail & Related papers (2024-02-24T18:46:06Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
We develop a novel training method for generative models, such as Generative Adversarial Networks and Normalizing Flows.
We show that achieving a specified precision-recall trade-off corresponds to minimizing a unique $f$-divergence from a family we call the textitPR-divergences.
Our approach improves the performance of existing state-of-the-art models like BigGAN in terms of either precision or recall when tested on datasets such as ImageNet.
arXiv Detail & Related papers (2023-05-30T10:07:17Z) - Parameter-efficient Tuning of Large-scale Multimodal Foundation Model [68.24510810095802]
We propose A graceful prompt framework for cross-modal transfer (Aurora) to overcome these challenges.
Considering the redundancy in existing architectures, we first utilize the mode approximation to generate 0.1M trainable parameters to implement the multimodal prompt tuning.
A thorough evaluation on six cross-modal benchmarks shows that it not only outperforms the state-of-the-art but even outperforms the full fine-tuning approach.
arXiv Detail & Related papers (2023-05-15T06:40:56Z) - How to train your draGAN: A task oriented solution to imbalanced
classification [15.893327571516016]
This paper proposes a unique, performance-oriented, data-generating strategy that utilizes a new architecture, coined draGAN.
The samples are generated with the objective of optimizing the classification model's performance, rather than similarity to the real data.
Empirically we show the superiority of draGAN, but also highlight some of its shortcomings.
arXiv Detail & Related papers (2022-11-18T07:37:34Z) - No Parameter Left Behind: How Distillation and Model Size Affect
Zero-Shot Retrieval [4.712097135437801]
We show that the number of parameters and early query-document interaction play a significant role in the generalization ability of retrieval models.
Our experiments show that increasing model size results in marginal gains on in-domain test sets, but much larger gains in new domains never seen during fine-tuning.
Our largest reranker reaches the state of the art in 12 of the 18 datasets of the Benchmark-IR (BEIR) and surpasses the previous state of the art by 3 average points.
arXiv Detail & Related papers (2022-06-06T19:56:14Z) - When Liebig's Barrel Meets Facial Landmark Detection: A Practical Model [87.25037167380522]
We propose a model that is accurate, robust, efficient, generalizable, and end-to-end trainable.
In order to achieve a better accuracy, we propose two lightweight modules.
DQInit dynamically initializes the queries of decoder from the inputs, enabling the model to achieve as good accuracy as the ones with multiple decoder layers.
QAMem is designed to enhance the discriminative ability of queries on low-resolution feature maps by assigning separate memory values to each query rather than a shared one.
arXiv Detail & Related papers (2021-05-27T13:51:42Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.