Root Cause Analysis Of Productivity Losses In Manufacturing Systems Utilizing Ensemble Machine Learning
- URL: http://arxiv.org/abs/2407.21503v1
- Date: Wed, 31 Jul 2024 10:21:20 GMT
- Title: Root Cause Analysis Of Productivity Losses In Manufacturing Systems Utilizing Ensemble Machine Learning
- Authors: Jonas Gram, Brandon K. Sai, Thomas Bauernhansl,
- Abstract summary: This study introduces a data-driven ensemble approach to analyze productivity losses per cycle.
The ensemble approach integrates various methods, including information theory and machine learning behavior models.
The method is validated using a semi-automated welding manufacturing system, an injection molding automation system, and a synthetically generated test PLC dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In today's rapidly evolving landscape of automation and manufacturing systems, the efficient resolution of productivity losses is paramount. This study introduces a data-driven ensemble approach, utilizing the cyclic multivariate time series data from binary sensors and signals from Programmable Logic Controllers (PLCs) within these systems. The objective is to automatically analyze productivity losses per cycle and pinpoint their root causes by assigning the loss to a system element. The ensemble approach introduced in this publication integrates various methods, including information theory and machine learning behavior models, to provide a robust analysis for each production cycle. To expedite the resolution of productivity losses and ensure short response times, stream processing becomes a necessity. Addressing this, the approach is implemented as data-stream analysis and can be transferred to batch processing, seamlessly integrating into existing systems without the need for extensive historical data analysis. This method has two positive effects. Firstly, the result of the analysis ensures that the period of lower productivity is reduced by identifying the likely root cause of the productivity loss. Secondly, these results are more reliable due to the ensemble approach and therefore avoid dependency on technical experts. The approach is validated using a semi-automated welding manufacturing system, an injection molding automation system, and a synthetically generated test PLC dataset. The results demonstrate the method's efficacy in offering a data-driven understanding of process behavior and mark an advancement in autonomous manufacturing system analysis.
Related papers
- Sparse Attention-driven Quality Prediction for Production Process Optimization in Digital Twins [53.70191138561039]
We propose to deploy a digital twin of the production line by encoding its operational logic in a data-driven approach.
We adopt a quality prediction model for production process based on self-attention-enabled temporal convolutional neural networks.
Our operation experiments on a specific tobacco shredding line demonstrate that the proposed digital twin-based production process optimization method fosters seamless integration between virtual and real production lines.
arXiv Detail & Related papers (2024-05-20T09:28:23Z) - Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
Unmanned Aerial Vehicles (UAVs) will be critical infrastructural components of future smart cities.
In order to operate efficiently, UAV reliability must be ensured by constant monitoring for faults and failures.
This paper leverages signal processing and Machine Learning methods to analyze the data of a comprehensive vibrational analysis to determine the presence of rotor blade defects.
arXiv Detail & Related papers (2024-04-24T13:50:27Z) - Root Causing Prediction Anomalies Using Explainable AI [3.970146574042422]
We present a novel application of explainable AI (XAI) for root-causing performance degradation in machine learning models.
A single feature corruption can cause cascading feature, label and concept drifts.
We have successfully applied this technique to improve the reliability of models used in personalized advertising.
arXiv Detail & Related papers (2024-03-04T19:38:50Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - Design & Implementation of Automatic Machine Condition Monitoring and
Maintenance System in Limited Resource Situations [0.0]
In the era of the fourth industrial revolution, it is essential to automate fault detection and diagnosis of machineries.
Some machines health monitoring systems are used globally but they are expensive and need trained personnel to operate and analyse.
Predictive maintenance and occupational health and safety culture are not available due to inadequate infrastructure, lack of skilled manpower, financial crisis, and others in developing countries.
arXiv Detail & Related papers (2024-01-22T08:06:04Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Towards the Automation of a Chemical Sulphonation Process with Machine
Learning [0.0]
This paper presents the results of applying machine learning methods during a chemical sulphonation process.
We used data from process parameters to train different models including Random Forest, Neural Network and linear regression.
Our experiments showed that it is possible to predict those product quality values with good accuracy, thus, having the potential to reduce time.
arXiv Detail & Related papers (2020-09-25T10:56:41Z) - Machine Learning to Tackle the Challenges of Transient and Soft Errors
in Complex Circuits [0.16311150636417257]
Machine learning models are used to predict accurate per-instance Functional De-Rating data for the full list of circuit instances.
The presented methodology is applied on a practical example and various machine learning models are evaluated and compared.
arXiv Detail & Related papers (2020-02-18T18:38:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.